Hans Brix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8508052/publications.pdf

Version: 2024-02-01

265 papers 17,028 citations

69 h-index 19190 118 g-index

276 all docs

276 docs citations

276 times ranked

11335 citing authors

#	Article	IF	CITATIONS
1	Cryptic lineages and potential introgression in a mixedâ€ploidy species (<i>Phragmites australis</i>) across temperate China. Journal of Systematics and Evolution, 2022, 60, 398-410.	3.1	16
2	The use of treatment wetlands plants for protein and cellulose valorization in biorefinery platform. Science of the Total Environment, 2022, 810, 152376.	8.0	7
3	Sustained Phosphorus Removal by Calcareous Materials in Long-Term (Two Years) Column Experiment. Water (Switzerland), 2022, 14, 682.	2.7	1
4	Microbial Electrochemically Assisted Treatment Wetlands: Current Flow Density as a Performance Indicator in Real-Scale Systems in Mediterranean and Northern European Locations. Frontiers in Microbiology, 2022, 13, 843135.	3.5	5
5	Enhanced degradation of hydrocarbons in constructed wetlands aided with nutrients, surfactant, and aeration. International Journal of Phytoremediation, 2022, 24, 1163-1172.	3.1	2
6	The Effect of Sol-Gel Coatings on the Phosphorus (P) Adsorption Capacity of Calcareous Materials for Use in Water Treatment. Water (Switzerland), 2022, 14, 3.	2.7	2
7	Effects of effluent recycle on treatment performance in a vertical flow constructed wetland. Ecological Engineering, 2022, 180, 106675.	3.6	3
8	Wastewater-Fertigated Short-Rotation Coppice, a Combined Scheme of Wastewater Treatment and Biomass Production: A State-of-the-Art Review. Forests, 2022, 13, 810.	2.1	6
9	Differences in relative air humidity affect responses to soil salinity in freshwater and salt marsh populations of the dominant grass species Phragmites australis. Hydrobiologia, 2021, 848, 3353-3369.	2.0	7
10	Intraspecific differences of Asian/Australian Phragmites australis subgroups reveal no potentially invasive traits. Hydrobiologia, 2021, 848, 3331-3351.	2.0	1
11	Phosphorus Recovery from Wastewater: Bioavailability of P Bound to Calcareous Material for Maize (Zea Mays L.) Growth. Recycling, 2021, 6, 25.	5.0	4
12	Transcriptome Analysis of Tetraploid and Octoploid Common Reed (Phragmites australis). Frontiers in Plant Science, 2021, 12, 653183.	3.6	5
13	Preface: Wetland ecosystemsâ€"functions and use in a changing climate. Hydrobiologia, 2021, 848, 3255-3258.	2.0	4
14	Shade and salinity responses of two dominant coastal wetland grasses: implications for light competition at the transition zone. Annals of Botany, 2021, 128, 469-480.	2.9	3
15	Investigating degradation metabolites and underlying pathway of azo dye "Reactive Black 5―in bioaugmented floating treatment wetlands. Environmental Science and Pollution Research, 2021, 28, 65229-65242.	5. 3	4
16	Simultaneous elimination of antibiotics resistance genes and dissolved organic matter in treatment wetlands: Characteristics and associated relationship. Chemical Engineering Journal, 2021, 415, 128966.	12.7	36
17	Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. Energies, 2021, 14, 8157.	3.1	3
18	A 3-Year In-Situ Measurement of CO2 Efflux in Coastal Wetlands: Understanding Carbon Loss through Ecosystem Respiration and its Partitioning. Wetlands, 2020, 40, 551-562.	1.5	2

#	Article	IF	CITATIONS
19	Growth performance of tropical wetland species (Cyperus involucratus Rottb. and Thalia geniculata) Tj ETQq1 1 0. 143, 105667.	.784314 r 3.6	gBT /Overlo 14
20	Relationship between Polycyclic Aromatic Hydrocarbons in Sediments and Invertebrates of Natural and Artificial Stormwater Retention Ponds. Water (Switzerland), 2020, 12, 2020.	2.7	3
21	Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils. Science of the Total Environment, 2020, 747, 141102.	8.0	28
22	In-Situ CO2 Partitioning Measurements in a Phragmites australis Wetland: Understanding Carbon Loss through Ecosystem Respiration. Wetlands, 2020, 40, 901-914.	1.5	4
23	Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populations in East China. Scientific Reports, 2020, 10, 17645.	3.3	14
24	Negative Feedback by Vegetation on Soil Organic Matter Decomposition in a Coastal Wetland. Wetlands, 2020, 40, 2785-2797.	1.5	3
25	Interactive Effects of N Form and P Concentration on Growth and Tissue Composition of Hybrid Napier Grass (Pennisetum purpureum × Pennisetum americanum). Plants, 2020, 9, 1003.	3.5	2
26	Suitability of Wild Phragmites australis as Bio-Resource: Tissue Quality and Morphology of Populations from Three Continents. Resources, 2020, 9, 143.	3.5	4
27	Growth and photosynthetic acclimation to temperature in hybrid Napier grass (Pennisetum) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 T O
28	Constructed Wetlands in Latin America and the Caribbean: A Review of Experiences during the Last Decade. Water (Switzerland), 2020, 12, 1744.	2.7	24
29	Biomethane Yield from Different European Phragmites australis Genotypes, Compared with Other Herbaceous Wetland Species Grown at Different Fertilization Regimes. Resources, 2020, 9, 57.	3.5	9
30	Community level physiological profiling of microbial electrochemical-based constructed wetlands. Science of the Total Environment, 2020, 721, 137761.	8.0	19
31	Intraspecific variation in <i>Phragmites australis</i> : Clinal adaption of functional traits and phenotypic plasticity vary with latitude of origin. Journal of Ecology, 2020, 108, 2531-2543.	4.0	38
32	Crushed Autoclaved Aerated Concrete (CAAC), a Potential Reactive Filter Medium for Enhancing Phosphorus Removal in Nature-Based Solutionsâ€"Preliminary Batch Studies. Water (Switzerland), 2019, 11, 1442.	2.7	9
33	Enhanced removal of pharmaceuticals in a biofilter: Effects of manipulating co-degradation by carbon feeding. Chemosphere, 2019, 236, 124303.	8.2	45
34	Large-scale remediation of oil-contaminated water using floating treatment wetlands. Npj Clean Water, 2019, 2, .	8.0	91
35	Critical Review: Biogeochemical Networking of Iron in Constructed Wetlands for Wastewater Treatment. Environmental Science & E	10.0	90
36	Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biological Invasions, 2019, 21, 2529-2541.	2.4	11

#	Article	IF	Citations
37	Critical Review: Biogeochemical Networking of Iron, Is It Important in Constructed Wetlands for Wastewater Treatment?. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental &	10.0	3
38	Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Science of the Total Environment, 2019, 664, 1150-1161.	8.0	20
39	Cork as a sustainable carbon source for nature-based solutions treating hydroponic wastewaters – Preliminary batch studies. Science of the Total Environment, 2019, 650, 267-276.	8.0	28
40	Impact of engineered nanoparticles on microbial transformations of carbon, nitrogen, and phosphorus in wastewater treatment processes – A review. Science of the Total Environment, 2019, 660, 1144-1154.	8.0	24
41	Side-by-side comparison of 15 pilot-scale conventional and intensified subsurface flow wetlands for treatment of domestic wastewater. Science of the Total Environment, 2019, 658, 1500-1513.	8.0	46
42	Electroactive biofilm-based constructed wetland (EABB-CW): A mesocosm-scale test of an innovative setup for wastewater treatment. Science of the Total Environment, 2019, 659, 796-806.	8.0	60
43	Characterization of Hydrocarbon-Degrading Bacteria in Constructed Wetland Microcosms Used to Treat Crude Oil Polluted Water. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 358-364.	2.7	20
44	Microbial community metabolic profiles in saturated constructed wetlands treating iohexol and ibuprofen. Science of the Total Environment, 2019, 651, 1926-1934.	8.0	23
45	Physiology of a plant invasion. Preslia, 2019, 91, 51-75.	2.8	25
46	Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant. Ecology and Evolution, 2018, 8, 2440-2452.	1.9	17
47	Rethinking Intensification of Constructed Wetlands as a Green Eco-Technology for Wastewater Treatment. Environmental Science & Econology, 2018, 52, 1693-1694.	10.0	69
48	Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. Water Research, 2018, 131, 228-238.	11.3	48
49	Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology, 2018, 99, 79-90.	3.2	54
50	Removal of the pesticide tebuconazole in constructed wetlands: Design comparison, influencing factors and modelling. Environmental Pollution, 2018, 233, 71-80.	7.5	62
51	Phytoremediation Potential of Typha orientalis and Scirpus littoralis in Removal of Nitrogen and Phosphorus from Intensive Whiteleg Shrimp Wastewater. E3S Web of Conferences, 2018, 68, 04003.	0.5	2
52	Carbon sequestration and its controlling factors in the temperate wetland communities along the Bohai Sea, China. Marine and Freshwater Research, 2018, 69, 700.	1.3	5
53	Comparison of removal efficiency of pathogenic microbes in four types of wastewater treatment systems in Denmark. Ecological Engineering, 2018, 124, 1-6.	3.6	19
54	New insights into the effects of support matrix on the removal of organic micro-pollutants and the microbial community in constructed wetlands. Environmental Pollution, 2018, 240, 699-708.	7.5	31

#	Article	IF	CITATIONS
55	Methodologies for the analysis of pesticides and pharmaceuticals in sediments and plant tissue. Analytical Methods, 2018, 10, 3791-3803.	2.7	1
56	Treatment of Anaerobic Digester Effluent Using Acorus calamus: Effects on Plant Growth and Tissue Composition. Plants, 2018, 7, 36.	3.5	6
57	Minimum Fe requirement and toxic tissue concentration of Fe in Phragmites australis: A tool for alleviating Fe-deficiency in constructed wetlands. Ecological Engineering, 2018, 118, 152-160.	3.6	11
58	Microbial Electrochemical Technologies for Wastewater Treatment: Principles and Evolution from Microbial Fuel Cells to Bioelectrochemical-Based Constructed Wetlands. Water (Switzerland), 2018, 10, 1128.	2.7	91
59	Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecological Engineering, 2017, 98, 394-402.	3.6	48
60	Effects of soil type and water saturation on growth, nutrient and mineral content of the perennial forage shrub Sesbania sesban. Agroforestry Systems, 2017, 91, 173-184.	2.0	2
61	Assessment of culturable bacterial endophytic communities colonizing Canna flaccida inhabiting a wastewater treatment constructed wetland. Ecological Engineering, 2017, 98, 418-426.	3.6	25
62	Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquacultural Engineering, 2017, 78, 95-104.	3.1	35
63	Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland grass Arundo donax, a candidate species for wetland paludiculture. Ecological Engineering, 2017, 105, 379-386.	3.6	24
64	Constructed wetlands and solar-driven disinfection technologies for sustainable wastewater treatment and reclamation in rural India: SWINGS project. Water Science and Technology, 2017, 76, 1474-1489.	2.5	33
65	Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environmental Pollution, 2017, 229, 362-370.	7.5	59
66	Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Research, 2017, 110, 241-251.	11.3	82
67	Effects of constructed wetland design on ibuprofen removal – A mesocosm scale study. Science of the Total Environment, 2017, 609, 38-45.	8.0	64
68	Phylogeography reveals a potential cryptic invasion in the Southern Hemisphere of Ceratophyllum demersum, New Zealand's worst invasive macrophyte. Scientific Reports, 2017, 7, 16569.	3.3	7
69	Global networks for invasion science: benefits, challenges and guidelines. Biological Invasions, 2017, 19, 1081-1096.	2.4	44
70	Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 2017, 98, 378-387.	3.6	32
71	Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis. Frontiers in Plant Science, 2017, 8, 1833.	3.6	123
72	Sludge Dewatering and Mineralization in Sludge Treatment Reed Beds. Water (Switzerland), 2017, 9, 160.	2.7	46

#	Article	IF	Citations
73	Constructed Wetlands for Water Treatment: New Developments. Water (Switzerland), 2017, 9, 397.	2.7	40
74	Acclimation to light and avoidance of photoinhibition in Typha latifolia is associated with high photosynthetic capacity and xanthophyll pigment content. Functional Plant Biology, 2017, 44, 774.	2.1	4
75	Hybrid Napier grass as a candidate species for bio-energy in plant-based water treatment systems: Interactive effects of nitrogen and water depth. Aquatic Botany, 2017, 138, 82-91.	1.6	14
76	Ảnh hưởng dạng Äʻạm vôcÆ¡ lên khả năng sinh trưởng và xƺ̉ lyÌ•Äʻạm cá»§a cổmồm Hoc = Journal of Science, 2017, Môî trưổng 2017, 100.	má»; (Hyı	menachne acu
77	Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb. AoB PLANTS, 2016, 8, .	2.3	33
78	Multilayer Substrate Configuration Enhances Removal Efficiency of Pollutants in Constructed Wetlands. Water (Switzerland), 2016, 8, 556.	2.7	7
79	Phragmites australis: How do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange?. Biological Invasions, 2016, 18, 2563-2576.	2.4	16
80	Microbial density and diversity in constructed wetland systems and the relation to pollutant removal efficiency. Water Science and Technology, 2016, 73, 679-686.	2.5	19
81	Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores?. Biological Invasions, 2016, 18, 2531-2549.	2.4	44
82	Phenotypic traits of the Mediterranean Phragmites australis M1 lineage: differences between the native and introduced ranges. Biological Invasions, 2016, 18, 2551-2561.	2.4	11
83	Removal of the pesticides imazalil and tebuconazole in saturated constructed wetland mesocosms. Water Research, 2016, 91, 126-136.	11.3	70
84	Phytoremediation of imazalil and tebuconazole by four emergent wetland plant species in hydroponic medium. Chemosphere, 2016, 148, 459-466.	8.2	68
85	Impact of aeration on macrophyte establishment in sub-surface constructed wetlands used for tertiary treatment of sewage. Ecological Engineering, 2016, 91, 65-73.	3.6	17
86	The interactive effect of Juncus effusus and water table position on mesocosm methanogenesis and methane emissions. Plant and Soil, 2016, 400, 45-54.	3.7	24
87	Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation. Environmental Science and Pollution Research, 2016, 23, 2890-2898.	5.3	62
88	Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China. PLoS ONE, 2016, 11, e0160612.	2.5	15
89	Ecosystem Service Value for the Common Reed Wetlands in the Liaohe Delta, Northeast China. Open Journal of Ecology, 2016, 06, 129-137.	1.0	14
90	Design and performance evaluation of a highly loaded aerated treatment wetland managing effluents from a food processing industry in Denmark. Water Practice and Technology, 2015, 10, 644-651.	2.0	4

#	Article	IF	Citations
91	Gas Transport and Exchange through Wetland Plant Aerenchyma. Soil Science Society of America Book Series, 2015, , 177-196.	0.3	2
92	Factors influencing CO ₂ and CH ₄ emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosciences, 2015, 12, 4965-4977.	3.3	72
93	Does & Do	3.3	7
94	Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. Ocean Modelling, 2015, 95, 1-14.	2.4	22
95	Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecological Engineering, 2015, 79, 1-7.	3.6	74
96	Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance. Environmental Pollution, 2015, 201, 107-120.	7.5	166
97	Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO ₂ in airâ€equilibrated water. Freshwater Biology, 2015, 60, 929-943.	2.4	19
98	Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam. Aquaculture Research, 2014, 45, 460-469.	1.8	40
99	Increased invasive potential of nonâ€native <i>Phragmites australis</i> : elevated <scp><scp>CO₂</scp></scp> and temperature alleviate salinity effects on photosynthesis and growth. Global Change Biology, 2014, 20, 531-543.	9.5	51
100	Development of constructed wetlands inÂperformance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 2014, 57, 40-55.	11.3	489
101	Microbial communities from different types of natural wastewater treatment systems: Vertical and horizontal flow constructed wetlands and biofilters. Water Research, 2014, 55, 304-312.	11.3	170
102	A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Research, 2014, 21, 11729-11763.	5. 3	229
103	Closely related freshwater macrophyte species, <i><scp>C</scp>eratophyllum demersum</i> and <i><scp>C</scp>.Âsubmersum</i> , differ in temperature response. Freshwater Biology, 2014, 59, 777-788.	2.4	7
104	Emissions of CO2 and CH4 from sludge treatment reed beds depend on system management and sludge loading. Journal of Environmental Management, 2014, 141, 51-60.	7.8	16
105	Effects of inorganic nitrogen form on growth, morphology, N uptake, and nutrient allocation in hybrid Napier grass (Pennisetum purpureum × Pennisetum americanum cv. Pakchong1). Ecological Engineering, 2014, 73, 653-658.	3.6	15
106	Large-scale management of common reed, Phragmites australis, for paper production: A case study from the Liaohe Delta, China. Ecological Engineering, 2014, 73, 760-769.	3.6	81
107	Ammonium tolerance and toxicity of Actinoscirpus grossus – A candidate species for use in tropical constructed wetland systems. Ecotoxicology and Environmental Safety, 2014, 107, 319-328.	6.0	13
108	Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta?. Hydrobiologia, 2014, 737, 5-23.	2.0	24

#	Article	IF	Citations
109	SWS European Chapter Meeting on wetland restorationâ€"Challenges and opportunities. Ecological Engineering, 2014, 66, 1-5.	3.6	3
110	Distribution of metals in fauna, flora and sediments of wet detention ponds and natural shallow lakes. Ecological Engineering, 2014, 66, 43-51.	3.6	24
111	Preadaptation and postâ€introduction evolution facilitate the invasion of <i>Phragmites australis</i> in North America. Ecology and Evolution, 2014, 4, 4567-4577.	1.9	38
112	Expression of major photosynthetic and saltâ€resistance genes in invasive reed lineages grown under elevated <scp>CO</scp> ₂ and temperature. Ecology and Evolution, 2014, 4, 4161-4172.	1.9	10
113	Monitoring the Short-Term Response to Salt Exposure of Two Genetically Distinct <i>Phragmites australis</i> Clones with Different Salinity Tolerance Levels. American Journal of Plant Sciences, 2014, 05, 1098-1109.	0.8	4
114	Sources and preservation of organic matter in soils of the wetlands in the Liaohe (Liao River) Delta, North China. Marine Pollution Bulletin, 2013, 71, 276-285.	5.0	26
115	Interactive effects of nitrogen form and pH on growth, morphology, N uptake and mineral contents of Coix lacryma-jobi L Aquatic Botany, 2013, 111, 144-149.	1.6	19
116	Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems?. Ecological Engineering, 2013, 61, 555-563.	3.6	157
117	Modeling the eutrophication of two mature planted stormwater ponds for runoff control. Ecological Engineering, 2013, 61, 601-613.	3.6	11
118	Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecological Engineering, 2013, 61, 564-574.	3.6	73
119	Nitrogen nutrition of Cyperus laevigatus and Phormium tenax: Effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics. Aquatic Botany, 2013, 106, 42-51.	1.6	40
120	Invasion of Old World <i><scp>P</scp>hragmites australis</i> in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche. Global Change Biology, 2013, 19, 3406-3422.	9.5	59
121	Comparative analysis of constructed wetlands: The design and construction of the ecotechnology research facility in Langenreichenbach, Germany. Ecological Engineering, 2013, 61, 527-543.	3.6	88
122	Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecological Engineering, 2013, 61, 544-554.	3.6	148
123	Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28, 583-597.	4.2	727
124	Interactive effects of elevated temperature and CO2 on two phylogeographically distinct clones of common reed (Phragmites australis). AoB PLANTS, 2013, 5, .	2.3	18
125	Photosynthesis of co-existing Phragmites haplotypes in their non-native range: are characteristics determined by adaptations derived from their native origin?. AoB PLANTS, 2013, 5, .	2.3	14
126	Response to multiâ€generational selection under elevated [<scp>CO</scp> ₂] in two temperature regimes suggests enhanced carbon assimilation and increased reproductive output in <i><scp>B</scp>rassica napus</i> L Ecology and Evolution, 2013, 3, 1163-1172.	1.9	14

#	Article	IF	CITATIONS
127	Differences in salinity tolerance of genetically distinct Phragmites australis clones. AoB PLANTS, 2013, 5, .	2.3	38
128	Sorption Media for Stormwater Treatmentâ€"A Laboratory Evaluation of Five Low ost Media for Their Ability to Remove Metals and Phosphorus from Artificial Stormwater. Water Environment Research, 2012, 84, 605-616.	2.7	23
129	Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range. AoB PLANTS, 2012, 2012, pls017.	2.3	24
130	Regression analysis of growth responses to water depth in three wetland plant species. AoB PLANTS, 2012, pls043-pls043.	2.3	12
131	Tracing the origin of Gulf Coast <i>Phragmites</i> (Poaceae): A story of longâ€distance dispersal and hybridization. American Journal of Botany, 2012, 99, 538-551.	1.7	113
132	Exploring the borders of European Phragmites within a cosmopolitan genus. AoB PLANTS, 2012, 2012, pls020.	2.3	61
133	Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquatic Botany, 2012, 102, 56-64.	1.6	106
134	Internal methane transport through <i><scp>J</scp>uncus effusus</i> : experimental manipulation of morphological barriers to test above―and belowâ€ground diffusion limitation. New Phytologist, 2012, 196, 799-806.	7.3	42
135	Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species. Aquatic Botany, 2012, 103, 37-47.	1.6	7
136	Different genotypes of Phragmites australis show distinct phenotypic plasticity in response to nutrient availability and temperature. Aquatic Botany, 2012, 103, 89-97.	1.6	42
137	Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1466-1477.	1.7	30
138	Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system. Water Research, 2012, 46, 3889-3896.	11.3	46
139	Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus) Tj ETQq1 1 0.784	3 1146rgBT ('O ∉∉ rlock 10
140	Intraspecies differences in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum. Aquatic Botany, 2012, 97, 49-56.	1.6	31
141	Response of Salvinia cucullata to high NH4+ concentrations at laboratory scales. Ecotoxicology and Environmental Safety, 2012, 79, 69-74.	6.0	21
142	Characteristics of biosolids from sludge treatment wetlands for agricultural reuse. Ecological Engineering, 2012, 40, 210-216.	3.6	52
143	Carbon footprint of sludge treatment reed beds. Ecological Engineering, 2012, 44, 298-302.	3.6	29
144	Toxicity of High Salinity Tannery Wastewater and Effects on Constructed Wetland Plants. International Journal of Phytoremediation, 2012, 14, 669-680.	3.1	16

#	Article	IF	Citations
145	Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment. Chemosphere, 2012, 88, 1257-1264.	8.2	142
146	Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere, 2012, 88, 1083-1089.	8.2	126
147	Environment versus dispersal in the assembly of western Amazonian palm communities. Journal of Biogeography, 2012, 39, 1318-1332.	3.0	61
148	Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. Journal of Environmental Management, 2012, 95, 66-71.	7.8	143
149	Geographically distinct Ceratophyllum demersum populations differ in growth, photosynthetic responses and phenotypic plasticity to nitrogen availability. Functional Plant Biology, 2012, 39, 774.	2.1	8
150	Plasticity in carbon acquisition of the heterophyllous Luronium natans: An endangered freshwater species in Europe. Aquatic Botany, 2011, 94, 127-133.	1.6	9
151	Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics. Aquaculture, 2011, 313, 57-64.	3.5	71
152	Do tropical wetland plants possess convective gas flow mechanisms?. New Phytologist, 2011, 190, 379-386.	7. 3	34
153	Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L European Journal of Agronomy, 2011, 35, 127-134.	4.1	47
154	The flower and the butterfly constructed wetland system at Koh Phi Phiâ€"System design and lessons learned during implementation and operation. Ecological Engineering, 2011, 37, 729-735.	3.6	50
155	Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: Horizontal subsurface flow versus vertical downflow. Ecological Engineering, 2011, 37, 711-720.	3.6	91
156	Elimination and accumulation of polycyclic aromatic hydrocarbons in urban stormwater wet detention ponds. Water Science and Technology, 2011, 64, 818-825.	2.5	11
157	Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?. BMC Plant Biology, 2010, 10, 23.	3.6	13
158	Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate. Ecological Engineering, 2010, 36, 527-535.	3.6	144
159	Filter bed systems treating domestic wastewater in the Nordic countries – Performance and reuse of filter media. Ecological Engineering, 2010, 36, 1651-1659.	3.6	73
160	Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genetics, 2010, 11, 52.	2.7	47
161	Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability. Annals of Botany, 2010, 105, 175-184.	2.9	31
162	Invasion strategies in clonal aquatic plants: are phenotypic differences caused by phenotypic plasticity or local adaptation?. Annals of Botany, 2010, 106, 813-822.	2.9	74

#	Article	IF	Citations
163	Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquatic Botany, 2010, 92, 142-148.	1.6	89
164	Alum application to improve water quality in a municipal wastewater treatment wetland: Effects on macrophyte growth and nutrient uptake. Chemosphere, 2010, 79, 186-192.	8.2	34
165	Appropriate and Sustainable Wastewater Management in Developing Countries by the Use of Constructed Wetlands. , 2010, , .		2
166	Nitrous oxide emission by aquatic macrofauna. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4296-4300.	7.1	88
167	Monitoring the startup of a wet detention pond equipped with sand filters and sorption filters. Water Science and Technology, 2009, 60, 1071-1079.	2.5	7
168	Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Science of the Total Environment, 2009, 407, 2996-3003.	8.0	60
169	Oxygen stress in Salvinia natans: Interactive effects of oxygen availability and nitrogen source. Environmental and Experimental Botany, 2009, 66, 153-159.	4.2	27
170	Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological Engineering, 2009, 35, 248-257.	3.6	228
171	Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecological Engineering, 2009, 35, 238-247.	3.6	150
172	Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecological Engineering, 2009, 35, 695-702.	3.6	68
173	Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Research, 2009, 43, 55-62.	11.3	205
174	Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 2009, 90, 43-51.	1.6	107
175	Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate. Aquatic Botany, 2009, 90, 67-73.	1.6	7 5
176	Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquatic Botany, 2009, 91, 181-186.	1.6	123
177	Growth responses of the perennial legume Sesbania sesban to NH4 and NO3 nutrition and effects on root nodulation. Aquatic Botany, 2009, 91, 238-244.	1.6	16
178	Herbarium specimens as a source of DNA for AFLP fingerprinting of Phragmites (Poaceae): possibilities and limitations. Plant Systematics and Evolution, 2008, 272, 223-231.	0.9	16
179	Effects of phosphate availability and redox intensity on growth and nutrient uptake of Rhynchospora tracyi, a wet prairie species in the everglades. Wetlands, 2008, 28, 151-163.	1.5	2
180	Different sensitivity of Phragmites australis and Glyceria maxima to high availability of ammonium-N. Aquatic Botany, 2008, 88, 93-98.	1.6	38

#	Article	IF	Citations
181	Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquatic Botany, 2008, 88, 160-170.	1.6	84
182	Twenty years experience with constructed wetland systems in Denmark $\hat{a} \in \text{``what did we learn?. Water Science and Technology, 2007, 56, 63-68.}$	2.5	53
183	Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands. Water Science and Technology, 2007, 56, 69-74.	2.5	44
184	Clone-specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquatic Botany, 2007, 86, 269-279.	1.6	85
185	Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Urban Wastewater in a Pilot Vertical Flow Constructed Wetland and a Sand Filter. Environmental Science & Emp; Technology, 2007, 41, 8171-8177.	10.0	224
186	Constructed Wetlands for Wastewater Treatment. , 2006, , 69-96.		73
187	The importance of vegetative and sexual dispersal of Luronium natans. Aquatic Botany, 2006, 84, 165-170.	1.6	16
188	Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 2006, 144, 967-975.	7.5	181
189	A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 429-439.	1.2	20
190	A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution, 2006, 258, 161-182.	0.9	103
191	Effect of NH4+/NO3â^² availability on nitrate reductase activity and nitrogen accumulation in wetland helophytes Phragmites australis and Glyceria maxima. Environmental and Experimental Botany, 2006, 55, 49-60.	4.2	55
192	The effect of weed cutting onLuronium natans. Aquatic Conservation: Marine and Freshwater Ecosystems, 2006, 16, 409-417.	2.0	7
193	The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecological Engineering, 2005, 25, 491-500.	3.6	366
194	Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Science and Technology, 2005, 51, 1-9.	2.5	65
195	Phosphorus removal in constructed wetlands: can suitable alternative media be identified?. Water Science and Technology, 2005, 51, 267-273.	2.5	69
196	Growth and nutrient responses of <i>Eloecharis cellulosa</i> (Cyperaceae) to phosphate level and redox intensity. American Journal of Botany, 2005, 92, 1457-1466.	1.7	21
197	Recycling of Treated Effluents Enhances Removal of Total Nitrogen in Vertical Flow Constructed Wetlands. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40, 1431-1443.	1.7	56
198	Tolerance and physiological responses of Phragmites australis to water deficit. Aquatic Botany, 2005, 81, 285-299.	1.6	155

#	Article	IF	Citations
199	The effects of NH4+ and NO3â [^] on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquatic Botany, 2005, 81, 326-342.	1.6	104
200	Growth responses of the Everglades wet prairie species Eleocharis cellulosa and Rhynchospora tracyi to water level and phosphate availability. Aquatic Botany, 2004, 78, 37-54.	1.6	42
201	Effects of water vapour pressure deficit and stomatal conductance on photosynthesis, internal pressurization and convective flow in three emergent wetland plants. Plant and Soil, 2003, 253, 71-79.	3.7	26
202	Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research, 2003, 37, 3390-3400.	11.3	238
203	Interactive effects of redox intensity and phosphate availability on growth and nutrient relations of <i>Cladium jamaicense</i> (Cyperaceae). American Journal of Botany, 2003, 90, 736-748.	1.7	27
204	Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. Water Science and Technology, 2003, 48, 51-58.	2.5	89
205	Removal of indicator bacteria from municipal wastewater in an experimental two-stage vertical flow constructed wetland system. Water Science and Technology, 2003, 48, 35-41.	2.5	91
206	Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany, 2002, 53, 2441-2450.	4.8	110
207	Root phosphatase activity in Cladium jamaicense and Typha domingensis grown in Everglades soil at ambient and elevated phosphorus levels. Wetlands, 2002, 22, 794-800.	1.5	20
208	Geographic variation in growth responses in Phragmites australis. Aquatic Botany, 2001, 69, 89-108.	1.6	89
209	Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquatic Botany, 2001, 69, 109-126.	1.6	66
210	Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases?. Aquatic Botany, 2001, 69, 313-324.	1.6	252
211	Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquatic Botany, 2001, 70, 117-133.	1.6	112
212	Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research, 2001, 35, 1159-1168.	11.3	342
213	Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Science and Technology, 2001, 44, 47-54.	2.5	207
214	Removal of nutrients from combined sewer overflows and lake water in a vertical-flow constructed wetland system. Water Science and Technology, 2001, 44, 171-176.	2.5	73
215	Zero-discharge of nutrients and water in a willow dominated constructed wetland. Water Science and Technology, 2001, 44, 407-412.	2.5	49
216	Zero-discharge of nutrients and water in a willow dominated constructed wetland. Water Science and Technology, 2001, 44, 407-12.	2.5	1

#	Article	IF	Citations
217	Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Science and Technology, 2001, 44, 47-54.	2.5	17
218	Ecology of Phragmites populations in the changing landscape. Folia Geobotanica, 2000, 35, 351-351.	0.9	2
219	Seed germination of two Everglades species, Cladium jamaicense and Typha domingensis. Aquatic Botany, 2000, 66, 169-180.	1.6	57
220	How â€~Green' Are Aquaculture, Constructed Wetlands and Conventional Wastewater Treatment Systems?. Water Science and Technology, 1999, 40, 45-50.	2.5	34
221	How ?green? are aquaculture, constructed wetlands and conventional wastewater treatment systems?. Water Science and Technology, 1999, 40, 45.	2.5	53
222	Methanogenesis and methane emissions: effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany, 1999, 64, 63-75.	1.6	107
223	Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquatic Botany, 1999, 64, 303-315.	1.6	43
224	Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites australis. Aquatic Botany, 1999, 64, 369-380.	1.6	80
225	Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquatic Botany, 1999, 64, 381-398.	1.6	113
226	The European research project on reed die-back and progression (EUREED). Limnologica, 1999, 29, 5-10.	1.5	82
227	Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany, 1998, 61, 165-180.	1.6	114
228	Design and performance of the Phyto-Nutri-Tron: a system for controlling the root and shoot environment for whole-plant ecophysiological studies. Environmental and Experimental Botany, 1998, 39, 141-157.	4.2	9
229	Do macrophytes play a role in constructed treatment wetlands?. Water Science and Technology, 1997, 35, 11-17.	2.5	801
230	Do macrophytes play a role in constructed treatment wetlands?. Water Science and Technology, 1997, 35, 11.	2.5	524
231	Die-back of Phragmites australis: influence on the distribution and rate of sediment methanogenesis. Biogeochemistry, 1997, 36, 173-188.	3.5	43
232	Growth, photosynthesis and acclimation by two submerged macrophytes in relation to temperature. Oecologia, 1997, 110, 320-327.	2.0	68
233	Eleocharis sphacelata: internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytologist, 1997, 136, 433-442.	7.3	44
234	Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquatic Botany, 1996, 54, 151-163.	1.6	164

#	Article	IF	CITATIONS
235	Oxygen Stress in Wetland Plants: Comparison of De-Oxygenated and Reducing Root Environments. Functional Ecology, 1996, 10, 521.	3.6	49
236	Biomass and nutrient element dynamics in Douglas-fir: effects of thinning and nitrogen fertilization over 18 years. Canadian Journal of Forest Research, 1996, 26, 376-388.	1.7	54
237	Effects of pH on ammonium uptake by Typha latifolia L Plant, Cell and Environment, 1996, 19, 1431-1436.	5.7	45
238	Use of constructed wetlands in water pollution control: historical development, present status, and future perspectives. Water Science and Technology, 1994, 30, 209-223.	2.5	227
239	Functions of Macrophytes in Constructed Wetlands. Water Science and Technology, 1994, 29, 71-78.	2.5	486
240	Modelling of in situ oxygen transport and aerobic metabolism in the hydrophyte Eleocharis sphacelata R. Br Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1994, 102, 367-372.	0.2	10
241	Effects of oxygen and nitrate on ammonium uptake kinetics and adenylate pools in <i>Phalaris arundinacea</i> L. and <i>Glyceria maxima</i> (Hartm.) Holmb. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1994, 102, 333-342.	0.2	7
242	Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquatic Botany, 1994, 49, 75-89.	1.6	127
243	Internal gas transport in Typha latifolia L. and Typha angustifolia L. 2. Convective throughflow pathways and ecological significance. Aquatic Botany, 1994, 49, 91-105.	1.6	76
244	Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnology and Oceanography, 1992, 37, 1420-1433.	3.1	312
245	SOIL OXYGENATION IN CONSTRUCTED REED BEDS: THE ROLE OF MACROPHYTE AND SOIL-ATMOSPHERE INTERFACE OXYGEN TRANSPORT. , 1990, , 53-66.		83
246	Gas exchange through the soil-atmosphere interphase and through dead culms of phragmites australis in a constructed reed bed receiving domestic sewage. Water Research, 1990, 24, 259-266.	11.3	110
247	Uptake and photosynthetic utilization of sediment-derived carbon by Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany, 1990, 38, 377-389.	1.6	38
248	WASTEWATER TREATMENT IN CONSTRUCTED REED BEDS IN DENMARK â€" STATE OF THE ART. , 1990, , 495-504	4.	36
249	Heavy metals in eelgrass (Zostera marina L.) during growth and decomposition. , 1989, , 189-196.		6
250	Heavy metals in eelgrass (Zostera marina L.) during growth and decomposition. Hydrobiologia, 1989, 176-177, 189-196.	2.0	34
251	Gas exchange through dead culms of reed, Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany, 1989, 35, 81-98.	1.6	60
252	Light-dependent variations in the composition of the internal atmosphere of Phragmites australis (Cav.) Trin. ex steudel. Aquatic Botany, 1988, 30, 319-329.	1.6	58

#	Article	IF	Citations
253	SEWAGE TREATMENT IN CONSTRUCTED REED BEDS â€" DANISH EXPERIENCES. , 1988, , 1665-1668.		8
254	Monitoring of heavy metal contamination in the Limfjord, Denmark, using biological indicators and sediment. Science of the Total Environment, 1987, 64, 239-252.	8.0	47
255	Treatment of Wastewater in the Rhizosphere of Wetland Plants – The Root-Zone Method. Water Science and Technology, 1987, 19, 107-118.	2.5	167
256	Monitoring of Mercury and Cadmium in Coastal Areas, Using Aquatic Organisms and Sediment. Water Science and Technology, 1987, 19, 1239-1241.	2.5	7
257	The Applicability of the Wastewater Treatment Plant in Othfresen as Scientific Documentation of the Root-Zone Method. Water Science and Technology, 1987, 19, 19-24.	2.5	24
258	Uptake and translocation of phosphorus in eelgrass (Zostera marina). Marine Biology, 1985, 90, 111-116.	1.5	67
259	The reproducibility in the determination of heavy metals in marine plant material $\hat{a} \in \hat{a}$ an interlaboratory calibration. Marine Chemistry, 1983, 12, 69-85.	2.3	17
260	The distribution of some metallic elements in eelgrass (Zostera marina L.) and sediment in the Limfjord, Denmark. Estuarine, Coastal and Shelf Science, 1983, 16, 455-467.	2.1	40
261	Seasonal changes in the concentrations of Ca, Fe, K, Mg, Mn and Na in eelgrass (Zostera marina L.) in the Limfjord, Denmark. Aquatic Botany, 1983, 17, 107-117.	1.6	24
262	Eelgrass (Zostera marina L.) as an indicator organism of trace metals in the Limfjord, Denmark. Marine Environmental Research, 1983, 8, 165-181.	2.5	74
263	Seasonal and environmental variation in cadmium, copper, lead and zinc concentrations in eelgrass (Zostera marina L.) in the Limfjor,k Denmark. Aquatic Botany, 1982, 14, 59-74.	1.6	83
264	The distribution of cadmium, copper, lead, and zinc in eelgrass (Zostera marina L.). Science of the Total Environment, 1982, 24, 51-63.	8.0	47
265	Absorption and translocation of zinc in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology, 1982, 58, 259-270.	1.5	50