Javier Read de Alaniz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8507883/publications.pdf Version: 2024-02-01

		57758	49909
117	8,116	44	87
papers	citations	h-index	g-index
122	122	122	6215
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal-Free Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2014, 136, 16096-16101.	13.7	787
2	A Highly Enantioselective Catalytic Intramolecular Stetter Reaction. Journal of the American Chemical Society, 2002, 124, 10298-10299.	13.7	480
3	Photoswitching Using Visible Light: A New Class of Organic Photochromic Molecules. Journal of the American Chemical Society, 2014, 136, 8169-8172.	13.7	401
4	Conversion of α-Haloaldehydes into Acylating Agents by an Internal Redox Reaction Catalyzed by Nucleophilic Carbenes. Journal of the American Chemical Society, 2004, 126, 9518-9519.	13.7	364
5	An Efficient Synthesis of Achiral and Chiral 1,2,4-Triazolium Salts:Â Bench Stable Precursors for N-Heterocyclic Carbenes. Journal of Organic Chemistry, 2005, 70, 5725-5728.	3.2	262
6	A Highly Enantio- and Diastereoselective Catalytic Intramolecular Stetter Reaction. Journal of the American Chemical Society, 2005, 127, 6284-6289.	13.7	248
7	A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations. Chemical Communications, 2015, 51, 11705-11708.	4.1	243
8	Controlled Radical Polymerization of Acrylates Regulated by Visible Light. ACS Macro Letters, 2014, 3, 580-584.	4.8	236
9	Design and Synthesis of Donor–Acceptor Stenhouse Adducts: AÂVisible Light Photoswitch Derived from Furfural. Journal of Organic Chemistry, 2014, 79, 11316-11329.	3.2	214
10	Tunable Visible and Near Infrared Photoswitches. Journal of the American Chemical Society, 2016, 138, 13960-13966.	13.7	210
11	Simple Benchtop Approach to Polymer Brush Nanostructures Using Visible-Light-Mediated Metal-Free Atom Transfer Radical Polymerization. ACS Macro Letters, 2016, 5, 258-262.	4.8	188
12	Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules, 2018, 51, 7421-7434.	4.8	176
13	Scope of the Asymmetric Intramolecular Stetter Reaction Catalyzed by Chiral Nucleophilic Triazolinylidene Carbenes. Journal of Organic Chemistry, 2008, 73, 2033-2040.	3.2	145
14	Versatile Method for the Synthesis of 4â€Aminocyclopentenones: Dysprosium(III) Triflate Catalyzed Azaâ€Piancatelli Rearrangement. Angewandte Chemie - International Edition, 2010, 49, 9484-9487.	13.8	145
15	The Nazarov Cyclization: A Valuable Method to Synthesize Fully Substituted Carbon Stereocenters. European Journal of Organic Chemistry, 2015, 2015, 23-37.	2.4	140
16	Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. Journal of the American Chemical Society, 2018, 140, 8027-8036.	13.7	137
17	BrÃ,nsted-Acid-Catalyzed Exchange in Polyester Dynamic Covalent Networks. ACS Macro Letters, 2018, 7, 817-821.	4.8	131
18	Direct and Highly Diastereoselective Synthesis of Azaspirocycles by a Dysprosium(III) Triflate Catalyzed Azaâ€Piancatelli Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 7167-7170.	13.8	125

#	Article	IF	CITATIONS
19	Light-Mediated Atom Transfer Radical Polymerization of Semi-Fluorinated (Meth)acrylates: Facile Access to Functional Materials. Journal of the American Chemical Society, 2017, 139, 5939-5945.	13.7	121
20	Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 2018, 140, 10425-10429.	13.7	121
21	Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system. Chemical Communications, 2016, 52, 10525-10528.	4.1	115
22	Dynamic Bottlebrush Polymer Networks: Self-Healing in Super-Soft Materials. Journal of the American Chemical Society, 2020, 142, 7567-7573.	13.7	108
23	Chemoselective Radical Dehalogenation and C–C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts. Journal of Organic Chemistry, 2016, 81, 7155-7160.	3.2	106
24	A Versatile and Highly Selective Colorimetric Sensor for the Detection of Amines. Chemistry - A European Journal, 2017, 23, 3562-3566.	3.3	99
25	Copper-Catalyzed Aerobic Oxidation of Hydroxamic Acids Leads to a Mild and Versatile Acylnitroso Ene Reaction. Journal of the American Chemical Society, 2011, 133, 10430-10433.	13.7	95
26	Mechanistic Investigation of the Enantioselective Intramolecular Stetter Reaction: Proton Transfer Is the First Irreversible Step. Organic Letters, 2011, 13, 1742-1745.	4.6	92
27	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.3	81
28	Rapid and Stereoselective Synthesis of Spirocyclic Ethers via the Intramolecular Piancatelli Rearrangement. Organic Letters, 2013, 15, 476-479.	4.6	78
29	Established and emerging strategies for polymer chainâ€end modification. Journal of Polymer Science Part A, 2017, 55, 2903-2914.	2.3	78
30	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie - International Edition, 2018, 57, 13433-13438.	13.8	78
31	Multiaddressable Photochromic Architectures: From Molecules to Materials. Advanced Optical Materials, 2019, 7, 1900224.	7.3	78
32	Electrophilic α-Amination Reaction of β-Ketoesters Using <i>N</i> -Hydroxycarbamates: Merging Aerobic Oxidation and Lewis Acid Catalysis. Journal of the American Chemical Society, 2012, 134, 18948-18951.	13.7	73
33	Synthesis of Hindered α-Amino Carbonyls: Copper-Catalyzed Radical Addition with Nitroso Compounds. Journal of the American Chemical Society, 2015, 137, 11614-11617.	13.7	73
34	Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9866-9871.	13.7	70
35	Aza-Piancatelli Rearrangement Initiated by Ring Opening of Donor–Acceptor Cyclopropanes. Organic Letters, 2013, 15, 3250-3253.	4.6	66
36	Copper-Catalyzed Aerobic Oxidation of <i>N</i> -Substituted Hydroxylamines: Efficient and Practical Access to Nitroso Compounds. Organic Letters, 2012, 14, 3620-3623.	4.6	63

Javier Read de Alaniz

#	Article	IF	CITATIONS
37	Total Synthesis of (+)-Nankakurines A and B and (±)-5- <i>epi</i> -Nankakurine A. Journal of Organic Chemistry, 2010, 75, 7519-7534.	3.2	61
38	Endo and Exo Diels–Alder Adducts: Temperature-Tunable Building Blocks for Selective Chemical Functionalization. Journal of the American Chemical Society, 2018, 140, 5009-5013.	13.7	60
39	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	4.8	58
40	Enantioselective Total Syntheses of Nankakurines A and B: Confirmation of Structure and Establishment of Absolute Configuration. Journal of the American Chemical Society, 2008, 130, 11297-11299.	13.7	54
41	A temperature-mapping molecular sensor for polyurethane-based elastomers. Applied Physics Letters, 2016, 108, .	3.3	52
42	Tuning the Diels–Alder Reaction for Bioconjugation to Maleimide Drug-Linkers. Bioconjugate Chemistry, 2018, 29, 2406-2414.	3.6	51
43	Controlled radical polymerization of vinyl ketones using visible light. Polymer Chemistry, 2017, 8, 3351-3356.	3.9	47
44	Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules, 2019, 52, 4370-4375.	4.8	46
45	Reversible Actuation via Photoisomerization-Induced Melting of a Semicrystalline Poly(Azobenzene). ACS Macro Letters, 2020, 9, 902-909.	4.8	46
46	Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Letters, 2021, 10, 857-863.	4.8	44
47	Light ontrollable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie - International Edition, 2020, 59, 5123-5128.	13.8	43
48	Unusual concentration dependence of the photoisomerization reaction in donor-acceptor Stenhouse adducts. Photochemical and Photobiological Sciences, 2019, 18, 1587-1595.	2.9	42
49	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	4.1	41
50	Electrophilic α-oxygenation reaction of β-ketoesters using N-hydroxycarbamates: control of the ambident reactivity of nitrosoformate intermediates. Chemical Science, 2013, 4, 3857.	7.4	40
51	Triazine-mediated controlled radical polymerization: new unimolecular initiators. Polymer Chemistry, 2016, 7, 370-374.	3.9	40
52	Tandem Reaction Progress Analysis as a Means for Dissecting Catalytic Reactions: Application to the Aza-Piancatelli Rearrangement. ACS Catalysis, 2015, 5, 4579-4585.	11.2	38
53	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	3.0	38
54	Glass Transition Temperature and Ion Binding Determine Conductivity and Lithium–Ion Transport in Polymer Electrolytes. ACS Macro Letters, 2021, 10, 104-109.	4.8	38

#	Article	IF	CITATIONS
55	Importance of Off-Cycle Species in the Acid-Catalyzed Aza-Piancatelli Rearrangement. Journal of Organic Chemistry, 2013, 78, 12784-12789.	3.2	36
56	High strainâ€rate response of spiropyran mechanophores in PMMA. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1347-1356.	2.1	36
57	Norbornadienes: Robust and Scalable Building Blocks for Cascade "Click―Coupling of High Molecular Weight Polymers. Journal of the American Chemical Society, 2019, 141, 13619-13624.	13.7	36
58	Dysprosium(III) catalysis in organic synthesis. Tetrahedron, 2012, 68, 2015-2026.	1.9	34
59	Efficient synthesis of 4-hydroxycyclopentenones: dysprosium(III) triflate catalyzed Piancatelli rearrangement. Tetrahedron, 2014, 70, 4105-4110.	1.9	34
60	Donor–Acceptor Stenhouse Adducts: Exploring the Effects of Ionic Character. Chemistry - A European Journal, 2021, 27, 4183-4190.	3.3	34
61	Vinylalumination of fluoro-carbonyl compounds. Tetrahedron Letters, 1998, 39, 8791-8794.	1.4	33
62	Multi-Sulfur-Annulated Fused Perylene Diimides for Organic Solar Cells with Low Open-Circuit Voltage Loss. ACS Applied Energy Materials, 2019, 2, 3805-3814.	5.1	31
63	Tuning Merocyanine Photoacid Structure to Enhance Solubility and Temporal Control: Application in Ring Opening Polymerization. ChemPhotoChem, 2019, 3, 467-472.	3.0	31
64	Polymer Stereocomplexation as a Scalable Platform for Nanoparticle Assembly. Journal of the American Chemical Society, 2020, 142, 1667-1672.	13.7	31
65	Tunable Photothermal Actuation Enabled by Photoswitching of Donor–Acceptor Stenhouse Adducts. ACS Applied Materials & Interfaces, 2020, 12, 54075-54082.	8.0	31
66	Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. Journal of the American Chemical Society, 2021, 143, 1562-1569.	13.7	31
67	Nitrosocarbonyl Hetero-Diels–Alder Cycloaddition: A New Tool for Conjugation. ACS Macro Letters, 2014, 3, 753-757.	4.8	30
68	Cascade rearrangement of furylcarbinols with hydroxylamines: practical access to densely functionalized cyclopentane derivatives. Organic and Biomolecular Chemistry, 2015, 13, 8465-8469.	2.8	30
69	Developments in Nitrosocarbonyl Chemistry: Mild Oxidation of N-Substituted Hydroxylamines Leads to New Discoveries. Synthesis, 2014, 46, 269-280.	2.3	29
70	Promoting the Furan Ringâ€Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angewandte Chemie - International Edition, 2021, 60, 10219-10227.	13.8	28
71	Photoinduced Deadhesion of a Polymer Film Using a Photochromic Donor–Acceptor Stenhouse Adduct. Macromolecules, 2019, 52, 6311-6317.	4.8	27
72	Asymmetric Electrophilic α-Amination of Silyl Enol Ether Derivatives via the Nitrosocarbonyl Hetero-ene Reaction. Organic Letters, 2015, 17, 4514-4517.	4.6	26

#	Article	IF	CITATIONS
73	Self-regulating photochemical Rayleigh-Bénard convection using a highly-absorbing organic photoswitch. Nature Communications, 2020, 11, 2599.	12.8	26
74	Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines. Tetrahedron Letters, 2015, 56, 3353-3357.	1.4	25
75	Direct synthesis of anilines and nitrosobenzenes from phenols. Organic and Biomolecular Chemistry, 2016, 14, 5520-5524.	2.8	24
76	Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.	7.8	23
77	Digital Light Processing of Dynamic Bottlebrush Materials. Advanced Functional Materials, 2022, 32, .	14.9	22
78	Interconvertible Living Radical and Cationic Polymerization using a Dual Photoelectrochemical Catalyst. Journal of the American Chemical Society, 2021, 143, 12278-12285.	13.7	21
79	Synthesis of Hindered Anilines: Three-Component Coupling of Arylboronic Acids, <i>tert</i> -Butyl Nitrite, and Alkyl Bromides. Organic Letters, 2016, 18, 5074-5077.	4.6	20
80	A Reactive Antibody Platform for One-Step Production of Antibody–Drug Conjugates through a Diels–Alder Reaction with Maleimide. Bioconjugate Chemistry, 2019, 30, 2340-2348.	3.6	18
81	A multi-stage single photochrome system for controlled photoswitching responses. Nature Chemistry, 2022, 14, 942-948.	13.6	18
82	Enantioselective PCCP BrÃ,nsted acid-catalyzed aza-Piancatelli rearrangement. Beilstein Journal of Organic Chemistry, 2019, 15, 1569-1574.	2.2	17
83	A Dieneâ€Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels–Alder Reaction with Maleimide or Proximityâ€Based Dimerization. Angewandte Chemie - International Edition, 2019, 58, 8489-8493.	13.8	17
84	Desulfurization–bromination: direct chain-end modification of RAFT polymers. Polymer Chemistry, 2017, 8, 7188-7194.	3.9	16
85	Norbornadiene Chain-End Functional Polymers as Stable, Readily Available Precursors to Cyclopentadiene Derivatives. Macromolecules, 2020, 53, 4917-4924.	4.8	16
86	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie, 2018, 130, 13621-13626.	2.0	15
87	Multi-stimuli responsive trigger for temporally controlled depolymerization of self-immolative polymers. Polymer Chemistry, 2019, 10, 4914-4919.	3.9	14
88	Rapid Synthesis of Fused Oxabicycles through the Molecular Rearrangement of Spirocyclic Ethers. European Journal of Organic Chemistry, 2013, 2013, 6237-6240.	2.4	13
89	Role of Material Composition in Photothermal Actuation of DASA-Based Polymers. ACS Applied Polymer Materials, 2022, 4, 141-149.	4.4	13
90	Rational mechanochemical design of Diels–Alder crosslinked biocompatible hydrogels with enhanced properties. Materials Horizons, 2022, 9, 1947-1953.	12.2	13

#	Article	IF	CITATIONS
91	Direct introduction of nitrogen and oxygen functionality with spatial control using copper catalysis. Chemical Science, 2018, 9, 8748-8752.	7.4	9
92	Shining Light on Cyclopentadienone–Norbornadiene Diels–Alder Adducts to Enable Photoinduced Click Chemistry with Cyclopentadiene. ACS Applied Materials & Interfaces, 2021, 13, 35422-35430.	8.0	9
93	Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants. ACS Central Science, 2022, 8, 235-245.	11.3	9
94	Influence of Polarity Change and Photophysical Effects on Photosurfactant-Driven Wetting. Langmuir, 2021, 37, 9939-9951.	3.5	7
95	Improving the kinetics and dark equilibrium of donor–acceptor Stenhouse adduct by triene backbone design. Chemical Communications, 2022, , .	4.1	7
96	Sulfur-fused perylene diimide electron transport layers allow >400 h operational lifetime of methylammonium lead iodide photovoltaics. Journal of Materials Chemistry C, 2019, 7, 11126-11133.	5.5	6
97	Promoting the Furan Ringâ€Opening Reaction to Access New Donor–Acceptor Stenhouse Adducts with Hexafluoroisopropanol. Angewandte Chemie, 2021, 133, 10307-10315.	2.0	6
98	Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS Polymers Au, 2022, 2, 27-34.	4.1	6
99	Amide Moieties Modulate the Antimicrobial Activities of Conjugated Oligoelectrolytes against Gramâ€negative Bacteria. ChemistryOpen, 2022, 11, e202100260.	1.9	6
100	Lewis Acid Catalyzed Rearrangement of Furylcarbinols: The Aza- and Oxa-Piancatelli Cascade Reaction. Synlett, 2013, 25, 08-11.	1.8	5
101	Nitrosocarbonyl hetero-Diels–Alder cycloaddition with 2-substituted 1,3-butadienes. Tetrahedron, 2017, 73, 4045-4051.	1.9	5
102	Next-Generation Materials via Orthogonal Stimuli. ACS Central Science, 2018, 4, 1087-1088.	11.3	5
103	The role of anions in light-driven conductivity in diarylethene-containing polymeric ionic liquids. Polymer Chemistry, 2021, 12, 719-724.	3.9	5
104	Role of Electron-Deficient Imidazoles in Ion Transport and Conductivity in Solid-State Polymer Electrolytes. Macromolecules, 2022, 55, 971-977.	4.8	5
105	Polymer Electrolyte Based on Cyano-Functionalized Polysiloxane with Enhanced Salt Dissolution and High Ionic Conductivity. Macromolecules, 2022, 55, 5723-5732.	4.8	5
106	Determination of methylene bridge crosslinking in chloromethylated PS-DVB resins. Journal of Polymer Science Part A, 2016, 54, 1955-1960.	2.3	4
107	Controlling the Isomerization of Photoresponsive Molecules through a Limiting Tautomerization Strategy. Journal of Physical Chemistry B, 2022, 126, 3347-3354.	2.6	4
108	Optical characterization and confocal fluorescence imaging of mechanochromic acrylate polymers. Journal of Applied Physics, 2015, 117, 043103.	2.5	3

#	Article	IF	CITATIONS
109	A Dieneâ€Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels–Alder Reaction with Maleimide or Proximityâ€Based Dimerization. Angewandte Chemie, 2019, 131, 8577-8581.	2.0	3
110	Aqueous reverse iodine transfer polymerization of acrylic acid. Journal of Polymer Science Part A, 2019, 57, 1877-1881.	2.3	3
111	Redox-Active Polymeric Ionic Liquids with Pendant N-Substituted Phenothiazine. ACS Applied Materials & Interfaces, 2021, 13, 5319-5326.	8.0	3
112	Lightâ€Controllable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie, 2020, 132, 5161-5166.	2.0	2
113	A new family of liquid and solid guanidine-based n-type dopants for solution-processed perovskite solar cells. Materials Chemistry Frontiers, 2020, 4, 3616-3622.	5.9	2
114	Multiwavelength Photodetectors Based on an Azobenzene Polymeric Ionic Liquid. ACS Applied Polymer Materials, 2021, 3, 5125-5133.	4.4	2
115	Dysprosium(III) Triflate Catalyzed Aza-Piancatelli Rearrangement. Synfacts, 2011, 2011, 1099-1099.	0.0	0
116	Optimum in ligand density for conductivity in polymer electrolytes. Molecular Systems Design and Engineering, 2021, 6, 1025-1038.	3.4	0
117	10.1063/1.4940750.1.,2016,,.		Ο