M Eric Schranz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/850657/publications.pdf

Version: 2024-02-01

115 papers 8,149 citations

57758 44 h-index 80 g-index

144 all docs

144 docs citations

times ranked

144

8701 citing authors

#	Article	IF	CITATIONS
1	A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nature Genetics, 2022, 54, 84-93.	21.4	56
2	Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC Plant Biology, 2022, 22, 140.	3.6	7
3	Expanding the Menu: Are Polyphagy and Gene Family Expansions Linked across Lepidoptera?. Genome Biology and Evolution, 2022, 14, .	2.5	10
4	Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. Frontiers in Plant Science, 2022, 13, 870818.	3.6	6
5	The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in <i>Arabidopsis thaliana</i> Botany, 2022, 73, 5514-5528.	4.8	12
6	The tomato cytochrome <scp>P450 CYP712G1</scp> catalyses the double oxidation of orobanchol <i>en route</i> to the rhizosphere signalling strigolactone, solanacol. New Phytologist, 2022, 235, 1884-1899.	7.3	19
7	Applying Synteny Networks (SynNet) to Study Genomic Arrangements of Protein-Coding Genes in Plants. Methods in Molecular Biology, 2022, , 199-215.	0.9	2
8	Insect eggâ€killing: a new front on the evolutionary armsâ€race between brassicaceous plants and pierid butterflies. New Phytologist, 2021, 230, 341-353.	7.3	27
9	<i>Aethionema arabicum</i> genome annotation using PacBio fullâ€length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant Journal, 2021, 106, 275-293.	5.7	20
10	Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales). G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	15
11	Origin and Evolution of the Cannabinoid Oxidocyclase Gene Family. Genome Biology and Evolution, 2021, 13, .	2.5	18
12	A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 2021, 231, 1923-1939.	7.3	19
13	Whole-genome microsynteny-based phylogeny of angiosperms. Nature Communications, 2021, 12, 3498.	12.8	53
14	Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.	8.3	44
15	Genome and transcriptome analysis of the beet armyworm <i>Spodoptera exigua</i> reveals targets for pest control. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	9
16	New Insights Into the Evolution of C4 Photosynthesis Offered by the Tarenaya Cluster of Cleomaceae. Frontiers in Plant Science, 2021, 12, 756505.	3.6	5
17	Repeatome-Based Phylogenetics in <i>Pelargonium</i> Section <i>Ciconium</i> (Sweet) Harvey. Genome Biology and Evolution, 2021, 13, .	2.5	4
18	Drivers of metabolic diversification: how dynamic genomic neighbourhoods generate new biosynthetic pathways in the Brassicaceae. New Phytologist, 2020, 227, 1109-1123.	7.3	49

#	Article	IF	CITATIONS
19	Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Computational Biology, 2020, 16, e1008318.	3.2	8
20	Natural variation in specialised metabolites production in the leafy vegetable spider plant (Gynandropsis gynandra L. (Briq.)) in Africa and Asia. Phytochemistry, 2020, 178, 112468.	2.9	9
21	Phylogeny and multiple independent wholeâ€genome duplication events in the Brassicales. American Journal of Botany, 2020, 107, 1148-1164.	1.7	32
22	Interspecific Hybrids Between Pelargonium $\tilde{A}-$ hortorum and Species From P. Section Ciconium Reveal Biparental Plastid Inheritance and Multi-Locus Cyto-Nuclear Incompatibility. Frontiers in Plant Science, 2020, 11, 614871.	3.6	4
23	Independent Recruitment of Duplicated \hat{I}^2 -Subunit-Coding NAD-ME Genes Aided the Evolution of C4 Photosynthesis in Cleomaceae. Frontiers in Plant Science, 2020, 11, 572080.	3.6	12
24	Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineageâ€specific patterns. Plant Journal, 2020, 103, 1516-1524.	5.7	22
25	Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae. Frontiers in Plant Science, 2020, 11, 719.	3.6	12
26	Genomic Origin and Diversification of the Glucosinolate MAM Locus. Frontiers in Plant Science, 2020, 11, 711.	3.6	10
27	The Genomics of <i>Cannabis </i> and Its Close Relatives. Annual Review of Plant Biology, 2020, 71, 713-739.	18.7	93
28	Capturing variation in floral shape: a virtual3D based morphospace for <i>Pelargonium</i> . PeerJ, 2020, 8, e8823.	2.0	4
29	The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genetics, 2019, 15, e1008373.	3.5	184
30	Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2165-2174.	7.1	89
31	Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics, 2019, 20, 95.	2.8	18
32	Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Science China Life Sciences, 2019, 62, 947-958.	4.9	52
33	Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). Planta, 2019, 250, 933-947.	3.2	20
34	Origins and geographic diversification of African rice (Oryza glaberrima). PLoS ONE, 2019, 14, e0203508.	2.5	17
35	Plastome based phylogenetics and younger crown node age in Pelargonium. Molecular Phylogenetics and Evolution, 2019, 137, 33-43.	2.7	19
36	Genome Improvement and Genetic Map Construction for <i>Aethionema arabicum</i> , the First Divergent Branch in the Brassicaceae Family. G3: Genes, Genomes, Genetics, 2019, 9, 3521-3530.	1.8	17

3

#	Article	IF	CITATIONS
37	An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). BMC Genomics, 2019, 20, 845.	2.8	5
38	Dissecting the Genomic Diversification of Late Embryogenesis Abundant (LEA) Protein Gene Families in Plants. Genome Biology and Evolution, 2019, 11, 459-471.	2.5	102
39	Comparative analysis of repetitive sequences among species from the potato and the tomato clades. Annals of Botany, 2019, 123, 521-532.	2.9	36
40	Identifying and Engineering Genes for Parthenogenesis in Plants. Frontiers in Plant Science, 2019, 10, 128.	3.6	32
41	Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae). Plant Systematics and Evolution, 2018, 304, 619-630.	0.9	13
42	Natural Variation within a Species for Traits Underpinning C ₄ Photosynthesis. Plant Physiology, 2018, 177, 504-512.	4.8	31
43	Brassicales phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. American Journal of Botany, 2018, 105, 463-469.	1.7	76
44	A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae). Horticulture Research, 2018, 5, 2.	6.3	54
45	New insights into the phylogeny of the TMBIM superfamily across the tree of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants. Molecular Phylogenetics and Evolution, 2018, 126, 266-278.	2.7	15
46	Efficient inference of homologs in large eukaryotic pan-proteomes. BMC Bioinformatics, 2018, 19, 340.	2.6	10
47	Drivers of Management of Spider Plant (Gynandropsis gynandra) Across Different Socio-linguistic Groups in Benin and Togo. Economic Botany, 2018, 72, 411-435.	1.7	13
48	Andromonoecy in Gynandropsis gynandra (L.) Briq. (Cleomaceae) and effects on fruit and seed production. Genetic Resources and Crop Evolution, 2018, 65, 2231-2239.	1.6	8
49	Lessons from Cleomaceae, the Sister of Crucifers. Trends in Plant Science, 2018, 23, 808-821.	8.8	35
50	Comparative genomics of the nonlegume <i>Parasponia</i> reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4700-E4709.	7.1	253
51	The Functional Change and Deletion of FLC Homologs Contribute to the Evolution of Rapid Flowering in Boechera stricta. Frontiers in Plant Science, 2018, 9, 1078.	3.6	9
52	DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. Plant Physiology, 2018, 177, 1410-1424.	4.8	77
53	Cloning and Functional Analysis of three Cold Regulated CBF Genes in the Overwintering Crucifer Boechera stricta. International Journal of Agriculture and Biology, 2018, 20, 594-600.	0.4	3
54	Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons. Genetic Resources and Crop Evolution, 2017, 64, 55-71.	1.6	25

#	Article	IF	CITATIONS
55	Phylogenomic Synteny Network Analysis of MADS-Box Transcription Factor Genes Reveals Lineage-Specific Transpositions, Ancient Tandem Duplications, and Deep Positional Conservation. Plant Cell, 2017, 29, 1278-1292.	6.6	106
56	Young inversion with multiple linked QTLs under selection in a hybrid zone. Nature Ecology and Evolution, 2017, 1, 119.	7.8	94
57	Network approaches for plant phylogenomic synteny analysis. Current Opinion in Plant Biology, 2017, 36, 129-134.	7.1	48
58	Polyploidy in deep and shallow evolutionary times: from ancient cotton, middle aged tobacco to recently formed monkey-flowers. Plant Systematics and Evolution, 2017, 303, 987-989.	0.9	3
59	Comparative transcriptomics reveal developmental turning points during embryogenesis of a hemimetabolous insect, the damselfly Ischnura elegans. Scientific Reports, 2017, 7, 13547.	3.3	24
60	Anatolian origins and diversification of <i>Aethionema</i> , the sister lineage of the core Brassicaceae. American Journal of Botany, 2017, 104, 1042-1054.	1.7	40
61	Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. Journal of Heredity, 2017, 108, 308-317.	2.4	9
62	Collinearity between potato (Solanum tuberosum L.) and wild relatives assessed by comparative cytogenetic mapping. Genome, 2017, 60, 228-240.	2.0	11
63	Flowering Locus C (FLC) Is a Potential Major Regulator of Glucosinolate Content across Developmental Stages of Aethionema arabicum (Brassicaceae). Frontiers in Plant Science, 2017, 8, 876.	3.6	21
64	Functional network analysis of genes differentially expressed during xylogenesis in <i>soc1ful</i> woody Arabidopsis plants. Plant Journal, 2016, 86, 376-390.	5.7	27
65	Wholeâ€genome duplications followed by tandem duplications drive diversification of the protein modifier <scp>SUMO</scp> in Angiosperms. New Phytologist, 2016, 211, 172-185.	7.3	54
66	Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Current Opinion in Plant Biology, 2016, 30, 108-115.	7.1	84
67	Developmental Control and Plasticity of Fruit and Seed Dimorphism in <i>Aethionema arabicum</i> Plant Physiology, 2016, 172, 1691-1707.	4.8	59
68	PanTools: representation, storage and exploration of pan-genomic data. Bioinformatics, 2016, 32, i487-i493.	4.1	46
69	Flower power and the mustard bomb: Comparative analysis of gene and genome duplications in glucosinolate biosynthetic pathway evolution in Cleomaceae and Brassicaceae. American Journal of Botany, 2016, 103, 1212-1222.	1.7	33
70	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	5.7	81
71	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	9.3	311
72	Tracing ancestor rice of Suriname Maroons back to its African origin. Nature Plants, 2016, 2, 16149.	9.3	31

#	Article	lF	CITATIONS
73	Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype- and organ-specific responses to flooding stress. Plant Physiology, 2016, 172, pp.00472.2016.	4.8	92
74	Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the <i>LRR-KISS </i> gene. Journal of Experimental Botany, 2016, 67, 2127-2138.	4.8	66
75	Positionally-conserved but sequence-diverged: identification of long non-coding RNAs in the Brassicaceae and Cleomaceae. BMC Plant Biology, 2015, 15, 217.	3.6	64
76	Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants. PLoS ONE, 2015, 10, e0128808.	2.5	19
77	A Complex Interplay of Tandem- and Whole-Genome Duplication Drives Expansion of the L-Type Lectin Receptor Kinase Gene Family in the Brassicaceae. Genome Biology and Evolution, 2015, 7, 720-734.	2.5	46
78	Nicotinate <i>O</i> -Glucosylation Is an Evolutionarily Metabolic Trait Important for Seed Germination under Stress Conditions in <i>Arabidopsis thaliana</i> - Plant Cell, 2015, 27, 1907-1924.	6.6	42
79	The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8362-8366.	7.1	458
80	Karyotype evolution in apomictic <i>Boechera</i> and the origin of the aberrant chromosomes. Plant Journal, 2015, 82, 785-793.	5.7	42
81	Introgression browser: highâ€throughput wholeâ€genome <scp>SNP</scp> visualization. Plant Journal, 2015, 82, 174-182.	5.7	17
82	Gene and genome duplications and the origin of C4 photosynthesis: Birth of a trait in the Cleomaceae. Current Plant Biology, 2014, 1, 2-9.	4.7	46
83	A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 2014, 15, 966.	2.8	29
84	Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments. Ecology and Evolution, 2014, 4, 2395-2409.	1.9	28
85	Exploring genetic variation in the tomato (<i>Solanum</i> section <i>Lycopersicon</i>) clade by wholeâ€genome sequencing. Plant Journal, 2014, 80, 136-148.	5.7	397
86	Group <scp>VII E</scp> thylene <scp>R</scp> esponse <scp>F</scp> actor diversification and regulation in four species from floodâ€prone environments. Plant, Cell and Environment, 2014, 37, 2421-2432.	5.7	58
87	Identification of quantitative trait loci and a candidate locus for freezing tolerance in controlled and outdoor environments in the overwintering crucifer <scp><i>B</i></scp> <i>oechera stricta</i> Plant, Cell and Environment, 2014, 37, 2459-2469.	5.7	10
88	A mixed-model QTL analysis for salt tolerance in seedlings of crop-wild hybrids of lettuce. Molecular Breeding, 2014, 34, 1389-1400.	2.1	10
89	An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics, 2013, 45, 891-898.	21.4	350
90	On the origin and evolution of apomixis in Boechera. Plant Reproduction, 2013, 26, 309-315.	2.2	56

#	Article	IF	Citations
91	QTL analysis reveals the genetic architecture of domestication traits in Crisphead lettuce. Genetic Resources and Crop Evolution, 2013, 60, 1487-1500.	1.6	28
92	Root Transcript Profiling of Two <i>Rorippa</i> Species Reveals Gene Clusters Associated with Extreme Submergence Tolerance. Plant Physiology, 2013, 163, 1277-1292.	4.8	62
93	The <i>Tarenaya hassleriana</i> Genome Provides Insight into Reproductive Trait and Genome Evolution of Crucifers Â. Plant Cell, 2013, 25, 2813-2830.	6.6	95
94	Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses. Evolutionary Applications, 2013, 6, 569-584.	3.1	23
95	Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family. Genome Biology and Evolution, 2013, 5, 2155-2173.	2.5	85
96	Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Annals of Botany, 2012, 109, 1263-1276.	2.9	66
97	A Gain-of-Function Polymorphism Controlling Complex Traits and Fitness in Nature. Science, 2012, 337, 1081-1084.	12.6	158
98	Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Current Opinion in Plant Biology, 2012, 15, 147-153.	7.1	267
99	Quantitative variation for apomictic reproduction in the genus <i>Boechera</i> (Brassicaceae). American Journal of Botany, 2010, 97, 1719-1731.	1.7	136
100	Paleopolyploidy in the Brassicales: Analyses of the Cleome Transcriptome Elucidate the History of Genome Duplications in Arabidopsis and Other Brassicales. Genome Biology and Evolution, 2009, 1, 391-399.	2.5	226
101	Multilocus Patterns of Nucleotide Diversity, Population Structure and Linkage Disequilibrium in <i>Boechera stricta</i> , a Wild Relative of Arabidopsis. Genetics, 2009, 181, 1021-1033.	2.9	54
102	Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory. Heredity, 2009, 102, 465-474.	2.6	59
103	Diploid apomicts of the <i>Boechera holboellii</i> complex display large-scale chromosome substitutions and aberrant chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14026-14031.	7.1	136
104	Comparative Genetic Mapping in Boechera stricta, a Close Relative of Arabidopsis. Plant Physiology, 2007, 144, 286-298.	4.8	67
105	Comparative genomics in the Brassicaceae: a family-wide perspective. Current Opinion in Plant Biology, 2007, 10, 168-175.	7.1	84
106	Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae. Plant Cell, 2006, 18, 1152-1165.	6.6	171
107	The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends in Plant Science, 2006, 11, 535-542.	8.8	535
108	Asexual reproduction in a close relative of Arabidopsis: a genetic investigation of apomixis in Boechera (Brassicaceae). New Phytologist, 2006, 171, 425-438.	7.3	50

7

#	Article	IF	CITATIONS
109	Partial Shotgun Sequencing of the Boechera stricta Genome Reveals Extensive Microsynteny and Promoter Conservation with Arabidopsis. Plant Physiology, 2006, 140, 1169-1182.	4.8	33
110	Sexual reproduction, hybridization, apomixis, and polyploidization in the genus <i>Boechera</i> (Brassicaceae). American Journal of Botany, 2005, 92, 1797-1810.	1.7	131
111	De novo variation in lifeâ€history traits and responses to growth conditions of resynthesized polyploid <i>Brassica napus</i> (Brassicaceae). American Journal of Botany, 2004, 91, 174-183.	1.7	95
112	Genome redundancy and plasticity within ancient and recent Brassica crop species. Biological Journal of the Linnean Society, 2004, 82, 665-674.	1.6	106
113	Characterization and Effects of the Replicated Flowering Time Gene <i>FLC</i> i> in <i>Brassica rapa</i> Genetics, 2002, 162, 1457-1468.	2.9	240
114	Novel flowering time variation in the resynthesized polyploid Brassica napus., 2000, 91, 242-246.		129
115	Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biological Journal of the Linnean Society, 0, 82, 675-688.	1.6	313