Eric Quirico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506473/publications.pdf

Version: 2024-02-01

		30070	56724
126	7,398	54	83
papers	citations	h-index	g-index
127	127	107	4695
127	127	127	4685
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Volatile transport modeling on Triton with new observational constraints. Icarus, 2022, 373, 114764.	2.5	7
2	Geometry induced bias in the remote near-IR identification of phyllosilicates on space weathered bodies. Icarus, 2022, 376, 114887.	2.5	3
3	Nanoscale mineralogy and organic structure in Orgueil (CI) and EET 92042 (CR) carbonaceous chondrites studied with AFMâ€IR spectroscopy. Meteoritics and Planetary Science, 2022, 57, 3-21.	1.6	8
4	Visible and near-infrared reflectance of hyperfine and hyperporous particulate surfaces. Icarus, 2021, 357, 114141.	2.5	13
5	"Water―abundance at the surface of C-complex main-belt asteroids. Icarus, 2021, 357, 114125.	2.5	18
6	Thermal History of Asteroid Parent Bodies Is Reflected in Their Metalorganic Chemistry. Astrophysical Journal Letters, 2021, 915, L7.	8.3	7
7	Optical constants of Pluto aerosol analogues from UV to near-IR. Icarus, 2021, 362, 114398.	2.5	13
8	A radiolytic origin of organic matter in primitive chondrites and trans-neptunian objects? New clues from ion irradiation experiments. Icarus, 2021, 364, 114462.	2.5	4
9	Infrared spectroscopy quantification of functional carbon groups in kerogens and coals: A calibration procedure. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119853.	3.9	12
10	Testing tholins as analogues of the dark reddish material covering Pluto's Cthulhu region. Icarus, 2021, 367, 114574.	2.5	6
11	VIS-IR Spectroscopy of Mixtures of Water Ice, Organic Matter, and Opaque Mineral in Support of Small Body Remote Sensing Observations. Minerals (Basel, Switzerland), 2021, 11, 1222.	2.0	4
12	Spectrophotometric characterization of the Philae landing site and surroundings with the Rosetta/OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1221-1238.	4.4	3
13	Mineralogy, chemistry, and composition of organic compounds in the fresh carbonaceous chondrite Mukundpura: CM1 or CM2?. Meteoritics and Planetary Science, 2020, 55, 1681-1696.	1.6	10
14	New insights into the structure and formation of coals, terrestrial and extraterrestrial kerogens from resonant UV Raman spectroscopy. Geochimica Et Cosmochimica Acta, 2020, 282, 156-176.	3.9	16
15	Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 2020, 367, .	12.6	115
16	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	12.6	64
17	Infrared detection of aliphatic organics on a cometary nucleus. Nature Astronomy, 2020, 4, 500-505.	10.1	41
18	Disk-resolved Photometric Properties of Pluto and the Coloring Materials across its Surface. Astronomical Journal, 2020, 159, 74.	4.7	18

#	Article	IF	Citations
19	Molecular and isotopic behavior of insoluble organic matter of the Orgueil meteorite upon heating. Geochimica Et Cosmochimica Acta, 2019, 263, 235-247.	3.9	12
20	A New Two-molecule Combination Band as a Diagnostic of Carbon Monoxide Diluted in Nitrogen Ice on Triton. Astronomical Journal, 2019, 158, 17.	4.7	6
21	The iron record of asteroidal processes in carbonaceous chondrites. Meteoritics and Planetary Science, 2019, 54, 2652-2665.	1.6	9
22	Initial results from the New Horizons exploration of 2014 MU $<\!$ sub $>69<\!$ /sub $>$, a small Kuiper Belt object. Science, 2019, 364, .	12.6	113
23	Organic Matter in Interplanetary Dusts and Meteorites. Advances in Astrobiology and Biogeophysics, 2019, , 23-50.	0.6	6
24	Characterization of the organic matter and hydration state of Antarctic micrometeorites: A reservoir distinct from carbonaceous chondrites. Icarus, 2018, 306, 74-93.	2.5	20
25	Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-µm sized cosmochemical analogues. Icarus, 2018, 306, 306-318.	2.5	23
26	Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica Et Cosmochimica Acta, 2018, 241, 17-37.	3.9	86
27	What is controlling the reflectance spectra (0.35–150 Âμm) of hydrated (and dehydrated) carbonaceous chondrites?. Icarus, 2018, 313, 124-138.	2.5	32
28	Pluto's haze as a surface material. Icarus, 2018, 314, 232-245.	2.5	50
29	Triton's surface ices: Distribution, temperature and mixing state from VLT/SINFONI observations. Icarus, 2018, 314, 274-293.	2.5	20
30	Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC). Icarus, 2017, 287, 140-151.	2.5	14
31	Previously unknown class of metalorganic compounds revealed in meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2819-2824.	7.1	47
32	Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus, 2017, 287, 229-260.	2.5	99
33	Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, 2017, 287, 218-228.	2.5	95
34	Comet 67P outbursts and quiescent coma at 1.3 au from the Sun: dust properties from Rosetta/VIRTIS-H observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S443-S458.	4.4	56
35	Photometric behaviour of 67P/Churyumov–Gerasimenko and analysis of its pre-perihelion diurnal variations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S346-S356.	4.4	16
36	Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochimica Et Cosmochimica Acta, 2016, 189, 312-337.	3.9	82

#	Article	IF	CITATIONS
37	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
38	Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer. Icarus, 2016, 272, 32-47.	2.5	127
39	The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS. (I) Prelanding mission phase. Icarus, 2016, 274, 334-349.	2.5	54
40	The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature, 2016, 539, 65-68.	27.8	44
41	Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science, 2016, 354, 1563-1566.	12.6	61
42	Cosmochemical implications of CONSERT permittivity characterization of 67P/CG. Monthly Notices of the Royal Astronomical Society, 2016, 462, S516-S532.	4.4	59
43	Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko. Nature, 2016, 529, 368-372.	27.8	104
44	Surface compositions across Pluto and Charon. Science, 2016, 351, aad9189.	12.6	242
45	Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition. Icarus, 2016, 264, 172-183.	2.5	38
46	A Noachian source region for the "Black Beauty―meteorite, and a source lithology for Mars surface hydrated dust?. Earth and Planetary Science Letters, 2015, 427, 104-111.	4.4	24
47	Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A31.	5.1	71
48	Ion irradiation of the Murchison meteorite: Visible to mid-infrared spectroscopic results. Astronomy and Astrophysics, 2015, 577, A41.	5.1	59
49	Hydrogen isotope exchanges between water and methanol in interstellar ices. Astronomy and Astrophysics, 2015, 584, A98.	5.1	27
50	Visibleâ€ <scp>IR</scp> and Raman microspectroscopic investigation of three Itokawa particles collected by Hayabusa: Mineralogy and degree of space weathering based on nondestructive analyses. Meteoritics and Planetary Science, 2015, 50, 1562-1576.	1.6	24
51	Interstellar and interplanetary solids in the laboratory. Proceedings of the International Astronomical Union, 2015, 11, 416-419.	0.0	1
52	The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites. Proceedings of the International Astronomical Union, 2015, 11, 253-256.	0.0	2
53	The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta. Science, 2015, 347, aaa0628.	12.6	293
54	The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature, 2015, 525, 500-503.	27.8	199

#	Article	IF	CITATIONS
55	Kinetics of hydrogen/deuterium exchanges in cometary ices. Icarus, 2015, 261, 14-30.	2.5	12
56	Formation of analogs of cometary nitrogen-rich refractory organics from thermal degradation of tholin and HCN polymer. Icarus, 2015, 250, 53-63.	2.5	23
57	The secondary history of Sutter's Mill CM carbonaceous chondrite based on water abundance and the structure of its organic matter from two clasts. Meteoritics and Planetary Science, 2014, 49, 2064-2073.	1.6	21
58	Origin of insoluble organic matter in type 1 and 2 chondrites: New clues, new questions. Geochimica Et Cosmochimica Acta, 2014, 136, 80-99.	3.9	68
59	Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies. Icarus, 2014, 237, 278-292.	2.5	60
60	Transmission infrared spectra (2–25μm) of carbonaceous chondrites (CI, CM, CV–CK, CR, C2) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf !
61	The abundance and stability of "water―in type 1 and 2 carbonaceous chondrites (CI, CM and CR). Geochimica Et Cosmochimica Acta, 2014, 137, 93-112.	3.9	104
62	Interstellar and interplanetary carbonaceous solids in the laboratory. Geochemical Journal, 2014, 48, 511-518.	1.0	6
63	Short duration thermal metamorphism in CR chondrites. Geochimica Et Cosmochimica Acta, 2013, 122, 267-279.	3.9	39
64	UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the nitrogen snow-line. Icarus, 2013, 224, 243-252.	2.5	103
65	Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus, 2013, 223, 534-543.	2.5	85
66	Hydrogen isotopic composition of the water in CR chondrites. Geochimica Et Cosmochimica Acta, 2013, 106, 111-133.	3.9	55
67	Compositional and structural investigation of HCN polymer through high resolution mass spectrometry. International Journal of Mass Spectrometry, 2013, 354-355, 193-203.	1.5	22
68	The 15N-enrichment in dark clouds and Solar System objects. Icarus, 2013, 223, 582-590.	2.5	85
69	New insights into the structure and chemistry of Titan's tholins via 13C and 15N solid state nuclear magnetic resonance spectroscopy. Icarus, 2012, 221, 844-853.	2.5	39
70	Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology, 2012, 12, 809-817.	3.0	158
71	Origin of iron oxide spherules in the banded iron formation of the Bababudan Group, Dharwar Craton, Southern India. Journal of Asian Earth Sciences, 2012, 52, 31-42.	2.3	23
72	The redox state of iron in the matrix of CI, CM and metamorphosed CM chondrites by XANES spectroscopy. Geochimica Et Cosmochimica Acta, 2012, 99, 305-316.	3.9	36

#	Article	IF	Citations
73	Optical constants from 370nm to 900nm of Titan tholins produced in a low pressure RF plasma discharge. Icarus, 2012, 218, 356-363.	2.5	33
74	Pressure dependent trace gas trapping in amorphous water ice at 77 K: Implications for determining conditions of comet formation. Icarus, 2012, 218, 760-770.	2.5	28
75	High resolution TEM of chondritic carbonaceous matter: Metamorphic evolution and heterogeneity. Meteoritics and Planetary Science, 2012, 47, 345-362.	1.6	42
76	Methanol ice on the surface of minor bodies in the solar system. Astronomy and Astrophysics, 2012, 544, A20.	5.1	22
77	Fast Precipitation of Acicular Goethite from Ferric Hydroxide Gel under Moderate Temperature (30) Tj ETQq $1\ 1\ 0$.784314 r 3.0	gBŢ ₄ Overlac
78	A reappraisal of the metamorphic history of EH3 and EL3 enstatite chondrites. Geochimica Et Cosmochimica Acta, 2011, 75, 3088-3102.	3.9	38
79	Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites. Meteoritics and Planetary Science, 2011, 46, 1363-1375.	1.6	53
80	Goethite as an alternative origin of the $3.1<$ i $>$ Î $\frac{1}{4}<$ i $>$ m band on dark asteroids. Astronomy and Astrophysics, 2011, 526, A85.	5.1	46
81	Organic materials in planetary and protoplanetary systems: nature or nurture?. Astronomy and Astrophysics, 2011, 533, A98.	5.1	27
82	NIR spectral trends of HED meteorites: Can we discriminate between the magmatic evolution, mechanical mixing and observation geometry effects?. lcarus, 2011, 216, 560-571.	2.5	39
83	Goethite as an alternative origin of the $3.1\hat{l}$ /4m band on dark asteroids (Corrigendum). Astronomy and Astrophysics, 2011, 530, C2.	5.1	1
84	The puzzling deuteration of methanol in low- to high-mass protostars. Astronomy and Astrophysics, 2011, 528, L13.	5.1	34
85	A TENTATIVE IDENTIFICATION OF HCN ICE ON TRITON. Astrophysical Journal Letters, 2010, 718, L53-L57.	8.3	51
86	In situ kinetic measurements of gas–solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell. Chemical Engineering Journal, 2010, 161, 250-256.	12.7	63
87	Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids. Geochimica Et Cosmochimica Acta, 2010, 74, 4881-4892.	3.9	136
88	Speciation of sulfur in the insoluble organic matter from carbonaceous chondrites by XANES spectroscopy. Earth and Planetary Science Letters, 2010, 300, 321-328.	4.4	58
89	Very high resolution mass spectrometry of HCN polymers and tholins. Faraday Discussions, 2010, 147, 495.	3.2	49
90	Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10522-10527.	7.1	72

#	Article	IF	Citations
91	Graphitic carbon nitride C6N9H3·HCl: Characterisation by UV and near-IR FT Raman spectroscopy. Journal of Solid State Chemistry, 2009, 182, 2670-2677.	2.9	80
92	Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: Applied and fundamental aspects. Journal of Hazardous Materials, 2009, 166, 788-795.	12.4	61
93	Chemical Characterization of Titan's Tholins: Solubility, Morphology and Molecular Structure Revisited. Journal of Physical Chemistry A, 2009, 113, 11195-11203.	2.5	81
94	Precursor and metamorphic condition effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals. Earth and Planetary Science Letters, 2009, 287, 185-193.	4.4	113
95	STRATIFICATION OF METHANE ICE ON ERIS' SURFACE. Astronomical Journal, 2009, 137, 315-328.	4.7	55
96	Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices. Meteoritics and Planetary Science, 2009, 44, 1643-1661.	1.6	61
97	Hydrogen/deuterium exchange in interstellar ice analogs. Astronomy and Astrophysics, 2009, 496, L21-L24.	5.1	46
98	New experimental constraints on the composition and structure of tholins. Icarus, 2008, 198, 218-231.	2.5	144
99	Magnetic classification of stony meteorites: 2. Nonâ€ordinary chondrites. Meteoritics and Planetary Science, 2008, 43, 959-980.	1.6	73
100	Tholins and their relevance for astrophysical issues. Proceedings of the International Astronomical Union, 2008, 4, 409-416.	0.0	4
101	Organic matter and metamorphic history of CO chondrites. Geochimica Et Cosmochimica Acta, 2007, 71, 1605-1623.	3.9	154
102	Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica Et Cosmochimica Acta, 2006, 70, 1849-1863.	3.9	277
103	Reflectance spectra and chemical structure of Titan's tholins: Application to the analysis of Cassini–Huygens observations. Icarus, 2006, 185, 301-307.	2.5	84
104	A micro-Raman survey of 10 IDPs and 6 carbonaceous chondrites. Planetary and Space Science, 2005, 53, 1443-1448.	1.7	60
105	Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2368-2377.	3.9	176
106	Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteoritics and Planetary Science, 2003, 38, 795-811.	1.6	105
107	Small hypervelocity particles captured in aerogel collectors: Location, extraction, handling and storage. Meteoritics and Planetary Science, 2002, 37, 855-865.	1.6	21
108	The Temperature-Dependent Spectrum of Methane Ice I between 0.7 and 5 \hat{l} 4m and Opportunities for Near-Infrared Remote Thermometry. Icarus, 2002, 155, 486-496.	2.5	135

#	Article	IF	CITATIONS
109	Synchrotron radiation as a tool for in situ investigation of extraterrestrial grains in low-density collectors: application to the analyses of the PIE polymid foams targets. Planetary and Space Science, 2002, 50, 1055-1065.	1.7	6
110	The 2000 Rosetta asteroid targets observational campaign: 140 Siwa and 4979 Otawara. Astronomy and Astrophysics, 2001, 379, 660-663.	5.1	4
111	Structural and chemical alteration of crystalline olivine under low energy He+ irradiation. Astronomy and Astrophysics, 2001, 368, L38-L41.	5.1	130
112	Pluto's Non-isothermal Surface. Icarus, 2000, 147, 220-250.	2.5	63
113	Water Ice on Triton. Icarus, 2000, 147, 309-316.	2.5	66
114	Synchrotron infrared microscopy of micron-sized extraterrestrial grains. Planetary and Space Science, 2000, 48, 1329-1339.	1.7	42
115	Composition, Physical State, and Distribution of Ices at the Surface of Triton. Icarus, 1999, 139, 159-178.	2.5	194
116	Evidence for Methane Segregation at the Surface of Pluto. Icarus, 1999, 142, 421-444.	2.5	149
117	Ethane on Pluto?. Science, 1999, 285, 1355c-1355.	12.6	2
118	The Surface Compositions of Triton, Pluto, and Charon. Astrophysics and Space Science Library, 1998, , 655-684.	2.7	34
118		2.7	34 91
	655-684.		
119	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure	2.7	91
119	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 1997, 127, 354-378. A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto. Icarus, 1997, 128,	2.7	91 173
119 120 121	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 1997, 127, 354-378. A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto. Icarus, 1997, 128, 181-188. Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures. Planetary and	2.7 2.5 2.5	91 173 57
119 120 121 122	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 1997, 127, 354-378. A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto. Icarus, 1997, 128, 181-188. Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures. Planetary and Space Science, 1996, 44, 973-986. The Temperature-Dependent Spectra of α and β Nitrogen Ice with Application to Triton. Icarus, 1993, 105,	2.7 2.5 2.5	91 173 57 36
119 120 121 122	Optical Properties of Ices From UV to Infrared. Astrophysics and Space Science Library, 1998, , 199-240. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus, 1997, 127, 354-378. A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto. Icarus, 1997, 128, 181-188. Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2: CH4 mixtures. Planetary and Space Science, 1996, 44, 973-986. The Temperature-Dependent Spectra of α and β Nitrogen Ice with Application to Triton. Icarus, 1993, 105, 254-258. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis. Monthly Notices of the Royal Astronomical Society, 0,	2.7 2.5 2.5 1.7 2.5	91 173 57 36