
Hongqing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8506081/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Field enhanced photocatalytic disinfection. Science Bulletin, 2022, 67, 779-783.	9.0	25
2	Chemical warfare agents decontamination via air mircoplasma excited by a triboelectric nanogenerator. Nano Energy, 2022, 95, 106992.	16.0	29
3	A triboelectric nanosensor based on ultra-thin MXene composite paper for heavy metal ion detection. Journal of Micromechanics and Microengineering, 2022, 32, 044003.	2.6	8
4	An Ultra‣imple Charge Supplementary Strategy for High Performance Rotary Triboelectric Nanogenerators. Small, 2021, 17, e2101430.	10.0	23
5	Implantable Sufficiently Integrated Multimodal Flexible Sensor for Intracranial Monitoring. , 2021, , .		1
6	High-Throughput Identification and Screening of Single Microbial Cells by Nanobowl Array. ACS Applied Materials & Interfaces, 2019, 11, 44933-44940.	8.0	2
7	Release of Ag/ZnO Nanomaterials and Associated Risks of a Novel Water Sterilization Technology. Water (Switzerland), 2019, 11, 2276.	2.7	3
8	Cancer Therapy: Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator (Adv. Funct. Mater. 41/2019). Advanced Functional Materials, 2019, 29, 1970285.	14.9	17
9	Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Advanced Functional Materials, 2019, 29, 1808640.	14.9	92
10	Nanogenerator for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701298.	7.6	147
11	Alkali Metal Chlorides Based Hydrogel as Ecoâ€Friendly Neutral Electrolyte for Bendable Solidâ€State Capacitor. Advanced Materials Interfaces, 2018, 5, 1701648.	3.7	23
12	Photothermally tunable biodegradation of implantable triboelectric nanogenerators for tissue repairing. Nano Energy, 2018, 54, 390-399.	16.0	136
13	An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating currentÂcharging. Nature Communications, 2018, 9, 2055.	12.8	153
14	Assessment of extracellular matrix modulation of cell traction force by using silicon nanowire array. Nano Energy, 2018, 50, 504-512.	16.0	9
15	Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials, 2017, 124, 25-34.	11.4	219
16	Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Applied Surface Science, 2017, 414, 230-237.	6.1	25
17	A self-powered sterilization system with both instant and sustainable anti-bacterial ability. Nano Energy, 2017, 36, 241-249.	16.0	123
18	The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Advances, 2017, 7, 16977-16983.	3.6	3

HONGQING FENG

#	Article	IF	CITATIONS
19	Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. Corrosion Science, 2017, 114, 45-56.	6.6	106
20	Plasma and ion-beam modification of metallic biomaterials for improved anti-bacterial properties. Surface and Coatings Technology, 2016, 306, 140-146.	4.8	18
21	Hafnium-implanted WE43 magnesium alloy for enhanced corrosion protection and biocompatibility. Surface and Coatings Technology, 2016, 306, 11-15.	4.8	18
22	Systematic Study of Inherent Antibacterial Properties of Magnesium-based Biomaterials. ACS Applied Materials & Interfaces, 2016, 8, 9662-9673.	8.0	79
23	Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO ₂ Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 24509-24516.	8.0	62
24	Unusual anti-bacterial behavior and corrosion resistance of magnesium alloy coated with diamond-like carbon. RSC Advances, 2016, 6, 14756-14762.	3.6	13
25	Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion. Scientific Reports, 2015, 5, 17399.	3.3	59
26	Assessment of the Physicochemical Properties and Biological Effects of Water Activated by Nonâ€thermal Plasma Above and Beneath the Water Surface. Plasma Processes and Polymers, 2015, 12, 439-449.	3.0	179
27	Engineering and functionalization of biomaterials via surface modification. Journal of Materials Chemistry B, 2015, 3, 2024-2042.	5.8	138
28	Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corrosion Science, 2015, 94, 142-155.	6.6	161
29	Early Growth Effects of Nanosecond Pulsed Electric Field (nsPEFs) Exposure on <i>Haloxylon ammodendron</i> . Plasma Processes and Polymers, 2015, 12, 372-379.	3.0	23
30	A genome-wide profilling of cell response mechanisms to non-thermal plasma treatment. , 2014, , .		0
31	Prolonged preservation and inactivation of surface-borne microorganisms of fresh fruits by non-thermal plasma activated water. , 2014, , .		Ο
32	An Efficient and Specific Protection of Nonâ€Thermal Plasmaâ€Induced Live Yeast Cell Derivative (LYCD) for Cells against Plasma Damage. Plasma Processes and Polymers, 2014, 11, 822-832.	3.0	10
33	A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage. Applied Physics Letters, 2013, 102, .	3.3	160
34	Characterization of live yeast cell derivative (LYCD) induced by atmospheric pressure cold plasma and its protective effects on cells. , 2013, , .		1
35	Atmospheric pressure cold plasma leads to apoptosis in saccharomyces cerevisiae by accumulation of intracellular reactive oxygen species and calcium. , 2013, , .		1
36	An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Applied Physics Letters, 2012, 100, .	3.3	26

HONGQING FENG

#	Article	IF	CITATIONS
37	Reactive plasma microjet and water system: Generation, conversion, and contributions to backteria inactivation - an analysis by electron spin resonance spectroscopy. , 2012, , .		0
38	Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet. , 2012, , .		37
39	Synergistic effect of nanosecond pulsed electric fields combined with low concentration of gemcitabine on humanoral squamous cell carcinoma in vitro. , 2012, , .		0
40	Nanosecond pulsed electric fields caused breast cancer self-distruction: Under in vivo magnetic resonance imaging evaluation. , 2012, , .		0
41	The collaboration of anti-oxidative systems in yeast cells after cold plasma treatment. , 2012, , .		0
42	Inactivation of <i>Bacillus subtilis</i> Spores in Water by a Directâ€Current, Cold Atmosphericâ€Pressure Air Plasma Microjet. Plasma Processes and Polymers, 2012, 9, 157-164.	3.0	112
43	Reactive Oxygen Species in a Nonâ€thermal Plasma Microjet and Water System: Generation, Conversion, and Contributions to Bacteria Inactivation—An Analysis by Electron Spin Resonance Spectroscopy. Plasma Processes and Polymers, 2012, 9, 417-424.	3.0	150
44	Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet. Journal of Applied Physics, 2012, 111, .	2.5	62
45	MRI of Auto-Transplantation of Bone Marrow-Derived Stem-Progenitor Cells for Potential Repair of Injured Arteries. PLoS ONE, 2012, 7, e31137.	2.5	8
46	Synergistic Effects of Nanosecond Pulsed Electric Fields Combined with Low Concentration of Gemcitabine on Human Oral Squamous Cell Carcinoma In Vitro. PLoS ONE, 2012, 7, e43213.	2.5	47
47	Magnetic Resonance Imaging of Bone Marrow Cell-Mediated Interleukin-10 Gene Therapy of Atherosclerosis. PLoS ONE, 2011, 6, e24529.	2.5	7
48	Clinical 3.0ÂT Magnetic Resonance Scanner to Be Used for Imaging of Mouse Atherosclerotic Lesions. Applied Magnetic Resonance, 2010, 39, 401-407.	1.2	0
49	A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using <i>Saccharomyces cerevisiae</i> single gene mutants. Applied Physics Letters, 2010, 97, .	3.3	37
50	The Interaction of a Direct-Current Cold Atmospheric-Pressure Air Plasma With Bacteria. IEEE Transactions on Plasma Science, 2009, 37, 121-127.	1.3	72
51	A triboelectric nanosensor based on ultra-thin MXene composite paper for heavy metal ion detection. Journal of Micromechanics and Microengineering, 0, , .	2.6	0