
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/850567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. Journal of Physical Chemistry Letters, 2015, 6, 4073-4082.	4.6	1,524
2	Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019, 4, 732-745.	39.5	1,506
3	Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chemistry, 2017, 9, 457-465.	13.6	1,409
4	Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43, 5183-5191.	38.1	1,234
5	Nitrogen Cycle Electrocatalysis. Chemical Reviews, 2009, 109, 2209-2244.	47.7	1,124
6	Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011, 660, 254-260.	3.8	908
7	Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy, 2017, 2, .	39.5	791
8	A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chemical Science, 2011, 2, 1902.	7.4	764
9	Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes. Journal of the American Chemical Society, 2012, 134, 9864-9867.	13.7	704
10	Theoretical Considerations on the Electroreduction of CO to C ₂ Species on Cu(100) Electrodes. Angewandte Chemie - International Edition, 2013, 52, 7282-7285.	13.8	677
11	Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nature Chemistry, 2015, 7, 403-410.	13.6	600
12	Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chemical Science, 2013, 4, 2710.	7.4	581
13	The stability number as a metric for electrocatalyst stability benchmarking. Nature Catalysis, 2018, 1, 508-515.	34.4	533
14	Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry, 2003, 554-555, 15-23.	3.8	506
15	Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule, 2021, 5, 290-294.	24.0	497
16	The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chemical Science, 2016, 7, 2639-2645.	7.4	494
17	Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2015, 5, 5380-5387.	11.2	472
18	Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 14510-14521.	13.8	463

#	Article	IF	CITATIONS
19	In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity. Journal of the American Chemical Society, 2015, 137, 15112-15121.	13.7	459
20	Electrochemical CO ₂ reduction on Cu ₂ O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Physical Chemistry Chemical Physics, 2014, 16, 12194-12201.	2.8	458
21	Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Communications, 2015, 6, 8177.	12.8	456
22	Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy and Environmental Science, 2012, 5, 9726.	30.8	436
23	Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale, 2011, 3, 2054.	5.6	402
24	The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nature Energy, 2020, 5, 891-899.	39.5	400
25	Electrochemical CO ₂ Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd–Pt Nanoparticles. ACS Catalysis, 2015, 5, 3916-3923.	11.2	394
26	Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nature Catalysis, 2021, 4, 654-662.	34.4	386
27	Role of Crystalline Defects in Electrocatalysis:  Mechanism and Kinetics of CO Adlayer Oxidation on Stepped Platinum Electrodes. Journal of Physical Chemistry B, 2002, 106, 12938-12947.	2.6	371
28	Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angewandte Chemie - International Edition, 2017, 56, 3621-3624.	13.8	366
29	Electrocatalytic Oxidation of Alcohols on Gold in Alkaline Media: Base or Gold Catalysis?. Journal of the American Chemical Society, 2011, 133, 6914-6917.	13.7	363
30	Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO ₂ Electroreduction by Process Conditions. ChemElectroChem, 2015, 2, 354-358.	3.4	361
31	lridium-based double perovskites for efficient water oxidation in acid media. Nature Communications, 2016, 7, 12363.	12.8	353
32	Electrochemistry of Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 3558-3586.	13.8	333
33	The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. Journal of Electroanalytical Chemistry, 2001, 506, 127-137.	3.8	323
34	The influence of pH on the reduction of CO and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si29.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:m to hydrocarbons on copper electrodes. Journal of Electroanalytical Chemistry, 2014, 716, 53-57.</mml:m </mml:msub></mml:mrow></mml:math 	nrow ^{3.8} 7mm	l:mn>2
35	Competition between CO ₂ Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions. Journal of the American Chemical Society, 2020, 142, 4154-4161.	13.7	315
36	Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nature Communications, 2016, 7, 10748.	12.8	294

MARC T M KOPER

#	Article	IF	CITATIONS
37	Structure- and Potential-Dependent Cation Effects on CO Reduction at Copper Single-Crystal Electrodes. Journal of the American Chemical Society, 2017, 139, 16412-16419.	13.7	289
38	Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals. ACS Catalysis, 2013, 3, 1292-1295.	11.2	282
39	Competition between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly Acidic Media. Langmuir, 2017, 33, 9307-9313.	3.5	277
40	Periodic Density Functional Study of CO and OH Adsorption on Ptâ^'Ru Alloy Surfaces:Â Implications for CO Tolerant Fuel Cell Catalysts. Journal of Physical Chemistry B, 2002, 106, 686-692.	2.6	275
41	Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chemical Science, 2013, 4, 1245.	7.4	273
42	Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth. ACS Catalysis, 2012, 2, 759-764.	11.2	259
43	Cooxidation on stepped Pt[n(111)×(111)] electrodes. Journal of Electroanalytical Chemistry, 2000, 487, 37-44.	3.8	258
44	Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions Electrochimica Acta, 2017, 227, 77-84.	5.2	258
45	Structure Sensitivity of Methanol Electrooxidation Pathways on Platinum:Â An On-Line Electrochemical Mass Spectrometry Study. Journal of Physical Chemistry B, 2006, 110, 10021-10031.	2.6	252
46	Orientation-Dependent Oxygen Evolution on RuO ₂ without Lattice Exchange. ACS Energy Letters, 2017, 2, 876-881.	17.4	251
47	Mechanism of the Catalytic Oxidation of Glycerol on Polycrystalline Gold and Platinum Electrodes. ChemCatChem, 2011, 3, 1176-1185.	3.7	246
48	MnO _x /IrO _x as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. Journal of the American Chemical Society, 2018, 140, 10270-10281.	13.7	245
49	The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nature Chemistry, 2012, 4, 177-182.	13.6	237
50	Physical and Chemical Nature of the Scaling Relations between Adsorption Energies of Atoms on Metal Surfaces. Physical Review Letters, 2012, 108, 116103.	7.8	233
51	Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chemical Science, 2013, 4, 2334.	7.4	229
52	Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today, 2010, 154, 92-104.	4.4	228
53	Electrocatalytic Conversion of Furanic Compounds. ACS Catalysis, 2016, 6, 6704-6717.	11.2	226
54	Role of Crystalline Defects in Electrocatalysis:Â CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 9863-9872.	2.6	221

#	Article	IF	CITATIONS
55	Coâ€adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Singleâ€Crystal Electrode. Angewandte Chemie - International Edition, 2017, 56, 15025-15029.	13.8	221
56	Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum. Journal of the American Chemical Society, 2013, 135, 9991-9994.	13.7	214
57	The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. Journal of Electroanalytical Chemistry, 2004, 562, 81-94.	3.8	209
58	A basic solution. Nature Chemistry, 2013, 5, 255-256.	13.6	205
59	Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chemical Society Reviews, 2013, 42, 5210.	38.1	202
60	Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catalysis Today, 2013, 202, 105-113.	4.4	201
61	Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochimica Acta, 2002, 47, 3621-3628.	5.2	197
62	Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps. Journal of Solid State Electrochemistry, 2013, 17, 339-344.	2.5	195
63	In Situ Spectroscopic Study of CO ₂ Electroreduction at Copper Electrodes in Acetonitrile. ACS Catalysis, 2016, 6, 2382-2392.	11.2	194
64	Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum. Journal of Chemical Physics, 1998, 109, 6051-6062.	3.0	189
65	Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides?. ACS Catalysis, 2015, 5, 869-873.	11.2	189
66	Ethanol electro-oxidation on platinum in alkaline media. Physical Chemistry Chemical Physics, 2009, 11, 10446.	2.8	186
67	Water at charged interfaces. Nature Reviews Chemistry, 2021, 5, 466-485.	30.2	186
68	Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Angewandte Chemie - International Edition, 2019, 58, 12999-13003.	13.8	182
69	First-principles computational electrochemistry: Achievements and challenges. Electrochimica Acta, 2012, 84, 3-11.	5.2	180
70	On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the Oxygen Reduction Reaction. Journal of Electroanalytical Chemistry, 2010, 647, 29-34.	3.8	177
71	Mechanistic classification of electrochemical oscillators — an operational experimental strategy. Journal of Electroanalytical Chemistry, 1999, 478, 50-66.	3.8	176
72	Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). Journal of Electroanalytical Chemistry, 2002, 524-525, 242-251.	3.8	176

#	Article	IF	CITATIONS
73	Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nature Communications, 2016, 7, 12440.	12.8	175
74	A spongy nickel-organic CO ₂ reduction photocatalyst for nearly 100% selective CO production. Science Advances, 2017, 3, e1700921.	10.3	175
75	Mechanism of the Dissociation and Electrooxidation of Ethanol and Acetaldehyde on Platinum As Studied by SERS. Journal of Physical Chemistry C, 2008, 112, 19080-19087.	3.1	170
76	Combining Voltammetry with HPLC: Application to Electro-Oxidation of Glycerol. Analytical Chemistry, 2010, 82, 5420-5424.	6.5	170
77	Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media. Nature Communications, 2021, 12, 4943.	12.8	170
78	Ab Initio Calculations of Intermediates of Oxygen Reduction on Low-Index Platinum Surfaces. Journal of the Electrochemical Society, 2004, 151, A2016.	2.9	169
79	Controlling Catalytic Selectivities during CO ₂ Electroreduction on Thin Cu Metal Overlayers. Journal of Physical Chemistry Letters, 2013, 4, 2410-2413.	4.6	168
80	Bond-Making and Breaking between Carbon, Nitrogen, and Oxygen in Electrocatalysis. Journal of the American Chemical Society, 2014, 136, 15694-15701.	13.7	168
81	Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces. Journal of Chemical Physics, 2000, 113, 4392-4407.	3.0	167
82	DFT Study on the Mechanism of the Electrochemical Reduction of CO ₂ Catalyzed by Cobalt Porphyrins. Journal of Physical Chemistry C, 2016, 120, 15714-15721.	3.1	167
83	Landing and Catalytic Characterization of Individual Nanoparticles on Electrode Surfaces. Journal of the American Chemical Society, 2012, 134, 18558-18561.	13.7	160
84	On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration. Journal of Applied Electrochemistry, 2006, 36, 1215-1221.	2.9	159
85	Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discussions, 2008, 140, 399-416.	3.2	159
86	Proton-coupled electron transfer in the electrocatalysis of CO ₂ reduction: prediction of sequential vs. concerted pathways using DFT. Chemical Science, 2017, 8, 458-465.	7.4	159
87	Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 279-285.	13.7	158
88	Interaction of H, O and OH with metal surfaces. Journal of Electroanalytical Chemistry, 1999, 472, 126-136.	3.8	157
89	Mechanisms of Carbon Monoxide and Methanol Oxidation at Single-crystal Electrodes. Topics in Catalysis, 2007, 46, 320-333.	2.8	157
90	Strong Impact of Platinum Surface Structure on Primary and Secondary Alcohol Oxidation during Electro-Oxidation of Glycerol. ACS Catalysis, 2016, 6, 4491-4500.	11.2	156

#	Article	IF	CITATIONS
91	Lattice Gas Model for CO Electrooxidation on Ptâ^'Ru Bimetallic Surfaces. Journal of Physical Chemistry B, 1999, 103, 5522-5529.	2.6	152
92	Nitrate reduction on single-crystal platinum electrodes. Electrochimica Acta, 2005, 50, 4318-4326.	5.2	152
93	Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochimica Acta, 2004, 49, 1307-1314.	5.2	151
94	Mechanistic Study on the Electrocatalytic Reduction of Nitric Oxide on Transition-Metal Electrodes. Journal of Catalysis, 2001, 202, 387-394.	6.2	148
95	Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions. Electrochimica Acta, 2008, 53, 5199-5205.	5.2	148
96	Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution. Physical Chemistry Chemical Physics, 2008, 10, 3802.	2.8	148
97	Electrocatalysis on gold. Physical Chemistry Chemical Physics, 2014, 16, 13583-13594.	2.8	143
98	Cathodic Corrosion: A Quick, Clean, and Versatile Method for the Synthesis of Metallic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 6346-6350.	13.8	142
99	Non-linear phenomena in electrochemical systems. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1369-1378.	1.7	139
100	Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catalysis Today, 2015, 244, 58-62.	4.4	138
101	Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Physical Chemistry Chemical Physics, 2006, 8, 2513.	2.8	137
102	The Interrelated Effect of Cations and Electrolyte pH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 13452-13462.	13.8	137
103	The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 2030-2034.	13.7	133
104	Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts. Journal of Catalysis, 2013, 308, 11-24.	6.2	132
105	Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO 2 reduction. Catalysis Today, 2016, 262, 90-94.	4.4	132
106	Measurement of competition between oxygen evolution and chlorine evolution using rotating ring-disk electrode voltammetry. Journal of Electroanalytical Chemistry, 2018, 819, 260-268.	3.8	131
107	Methanol Oxidation on Stepped Pt[n(111) × (110)] Electrodes: A Chronoamperometric Study. Journal of Physical Chemistry B, 2003, 107, 8557-8567.	2.6	129
108	The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO ₂ Reduction on Gold Electrodes. Journal of the American Chemical Society, 2022, 144, 1589-1602.	13.7	127

#	Article	IF	CITATIONS
109	Promotion of the Oxidation of Carbon Monoxide at Stepped Platinum Single-Crystal Electrodes in Alkaline Media by Lithium and Beryllium Cations. Journal of the American Chemical Society, 2010, 132, 16127-16133.	13.7	124
110	The theory of electrochemical instabilities. Electrochimica Acta, 1992, 37, 1771-1778.	5.2	122
111	Instabilities and oscillations in simple models of electrocatalytic surface reactions. Journal of Electroanalytical Chemistry, 1994, 371, 149-159.	3.8	122
112	The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: A mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochimica Acta, 2014, 129, 127-136.	5.2	122
113	Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins. Surface Science, 2013, 607, 47-53.	1.9	121
114	Pseudo-Single-Crystal Electrochemistry on Polycrystalline Electrodes: Visualizing Activity at Grains and Grain Boundaries on Platinum for the Fe ²⁺ /Fe ³⁺ Redox Reaction. Journal of the American Chemical Society, 2013, 135, 3873-3880.	13.7	121
115	Stability study and categorization of electrochemical oscillators by impedance spectroscopy. Journal of Electroanalytical Chemistry, 1996, 409, 175-182.	3.8	120
116	Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode. Electrochimica Acta, 2001, 46, 923-930.	5.2	120
117	Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochemistry Communications, 2011, 13, 466-469.	4.7	119
118	Structure- and Coverage-Sensitive Mechanism of NO Reduction on Platinum Electrodes. ACS Catalysis, 2017, 7, 4660-4667.	11.2	118
119	Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N ₂ . Journal of the American Chemical Society, 2011, 133, 10928-10939.	13.7	117
120	Modeling the Oxygen Evolution Reaction on Metal Oxides: The Infuence of Unrestricted DFT Calculations. Journal of Physical Chemistry C, 2014, 118, 4095-4102.	3.1	117
121	Selectivity Trends Between Oxygen Evolution and Chlorine Evolution on Iridium-Based Double Perovskites in Acidic Media. ACS Catalysis, 2019, 9, 8561-8574.	11.2	117
122	Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Physica D: Nonlinear Phenomena, 1995, 80, 72-94.	2.8	116
123	Electrocatalytic Hydrogenation of 5â€Hydroxymethylfurfural in Acidic Solution. ChemSusChem, 2015, 8, 1745-1751.	6.8	113
124	Oscillations and Complex Dynamical Bifurcations in Electrochemical Systems. Advances in Chemical Physics, 2007, , 161-298.	0.3	112
125	Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angewandte Chemie, 2017, 129, 3675-3678.	2.0	112
126	Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nature Materials, 2018, 17, 277-282.	27.5	112

#	Article	IF	CITATIONS
127	Electrolyte Effects on CO ₂ Electrochemical Reduction to CO. Accounts of Chemical Research, 2022, 55, 1900-1911.	15.6	112
128	Field-Dependent Electrodeâ ``Chemisorbate Bonding:Â Sensitivity of Vibrational Stark Effect and Binding Energetics to Nature of Surface Coordination. Journal of the American Chemical Society, 2002, 124, 2796-2805.	13.7	110
129	Adsorption of phosphate species on poly-oriented Pt and Pt(1 1 1) electrodes over a wide range of pH. Electrochimica Acta, 2010, 55, 7961-7968.	5.2	109
130	Electrocatalytic Hydrogenation of 5â€Hydroxymethylfurfural in the Absence and Presence of Glucose. ChemSusChem, 2013, 6, 1659-1667.	6.8	109
131	Voltammetric Scanning Electrochemical Cell Microscopy: Dynamic Imaging of Hydrazine Electro-oxidation on Platinum Electrodes. Analytical Chemistry, 2015, 87, 5782-5789.	6.5	109
132	Iron-Based Perovskites for Catalyzing Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 8445-8454.	3.1	106
133	Electrocatalysis on bimetallic and alloy surfaces. Surface Science, 2004, 548, 1-3.	1.9	105
134	Electrochemical Reduction of NO by Hemin Adsorbed at Pyrolitic Graphite. Journal of the American Chemical Society, 2005, 127, 7579-7586.	13.7	103
135	Computational Comparison of Late Transition Metal (100) Surfaces for the Electrocatalytic Reduction of CO to C ₂ Species. ACS Energy Letters, 2018, 3, 1062-1067.	17.4	103
136	Electrochemical Hydrogen Production: Bridging Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2010, 49, 3723-3725.	13.8	102
137	Glycerol electro-oxidation on bismuth-modified platinum single crystals. Journal of Catalysis, 2017, 346, 117-124.	6.2	102
138	Modeling the butterfly: the voltammetry of (â^š3×â^š3)R30° and p(2×2) overlayers on (111) electrodes. Journal of Electroanalytical Chemistry, 2000, 485, 161-165.	3.8	100
139	pH dependence of the electroreduction of nitrate on Rh and Pt polycrystalline electrodes. Chemical Communications, 2014, 50, 2148-2151.	4.1	100
140	Oxidation of Formic Acid and Carbon Monoxide on Gold Electrodes Studied by Surface-Enhanced Raman Spectroscopy and DFT. ChemPhysChem, 2005, 6, 2597-2606.	2.1	99
141	A lattice-gas model for halide adsorption on single-crystal electrodes. Journal of Electroanalytical Chemistry, 1998, 450, 189-201.	3.8	98
142	Carbon Monoxide Oxidation on Pt Single Crystal Electrodes: Understanding the Catalysis for Low Temperature Fuel Cells. ChemPhysChem, 2011, 12, 2064-2072.	2.1	98
143	Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. Physical Chemistry Chemical Physics, 2013, 15, 3196.	2.8	98
144	Electrolyte Effects on the Faradaic Efficiency of CO ₂ Reduction to CO on a Gold Electrode. ACS Catalysis, 2021, 11, 4936-4945.	11.2	97

#	Article	IF	CITATIONS
145	Theory of the transition from sequential to concerted electrochemical proton–electron transfer. Physical Chemistry Chemical Physics, 2013, 15, 1399-1407.	2.8	96
146	Electrochemical oscillators: their description through a mathematical model. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 303, 73-94.	0.1	95
147	Structural principles to steer the selectivity of the electrocatalytic reduction of aliphatic ketones on platinum. Nature Catalysis, 2019, 2, 243-250.	34.4	95
148	Potential Oscillations and S-Shaped Polarization Curve in the Continuous Electro-oxidation of CO on Platinum Single-crystal Electrodes. Journal of Physical Chemistry B, 2001, 105, 8381-8386.	2.6	94
149	Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & Interfaces, 2019, 11, 613-623.	8.0	94
150	Cathodic Corrosion as a Facile and Effective Method To Prepare Clean Metal Alloy Nanoparticles. Journal of the American Chemical Society, 2011, 133, 17626-17629.	13.7	92
151	Ab initio studies of a water layer at transition metal surfaces. Journal of Chemical Physics, 2005, 122, 054701.	3.0	89
152	Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces. Physical Chemistry Chemical Physics, 2004, 6, 4215.	2.8	88
153	Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media. ACS Catalysis, 2021, 11, 14328-14335.	11.2	87
154	Reduction of NO Adlayers on Pt(110) and Pt(111) in Acidic Media:Â Evidence for Adsorption Site-Specific Reduction. Langmuir, 2005, 21, 1448-1456.	3.5	86
155	Field-Dependent Chemisorption of Carbon Monoxide on Platinum-Group (111) Surfaces:Â Relationships between Binding Energetics, Geometries, and Vibrational Properties as Assessed by Density Functional Theory. Journal of Physical Chemistry B, 2001, 105, 3518-3530.	2.6	85
156	Importance of Solvation for the Accurate Prediction of Oxygen Reduction Activities of Pt-Based Electrocatalysts. Journal of Physical Chemistry Letters, 2017, 8, 2243-2246.	4.6	85
157	Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces. Journal of Chemical Physics, 2014, 140, 134708.	3.0	83
158	Electrochemical and Spectroelectrochemical Characterization of an Iridium-Based Molecular Catalyst for Water Splitting: Turnover Frequencies, Stability, and Electrolyte Effects. Journal of the American Chemical Society, 2014, 136, 10432-10439.	13.7	83
159	The modeling of mixedâ€mode and chaotic oscillations in electrochemical systems. Journal of Chemical Physics, 1992, 96, 7797-7813.	3.0	81
160	Electric field effects on CO and NO adsorption at the Pt(111) surface. Journal of Electroanalytical Chemistry, 1999, 476, 64-70.	3.8	81
161	The nature of chemisorbates formed from ammonia on gold and palladium electrodes as discerned from surface-enhanced Raman spectroscopy. Electrochemistry Communications, 2001, 3, 293-298.	4.7	80
162	Double Layer at the Pt(111)–Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy–Chapman Screening. Angewandte Chemie - International Edition, 2020, 59, 711-715.	13.8	80

#	Article	IF	CITATIONS
163	The effect of the cooling atmosphere in the preparation of flame-annealed Pt(111) electrodes on CO adlayer oxidation. Electrochemistry Communications, 2000, 2, 487-490.	4.7	79
164	Electrochemical Reduction of Oxygen on Gold Surfaces:  A Density Functional Theory Study of Intermediates and Reaction Paths. Journal of Physical Chemistry C, 2007, 111, 2607-2613.	3.1	79
165	Tuning Adsorption via Strain and Vertical Ligand Effects. ChemPhysChem, 2010, 11, 1518-1524.	2.1	79
166	Influence of Hydrazine-Induced Aggregation on the Electrochemical Detection of Platinum Nanoparticles. Langmuir, 2013, 29, 2054-2064.	3.5	79
167	Mechanism of Electrocatalytic Reduction of Nitric Oxide on Pt(100). Journal of Physical Chemistry B, 2005, 109, 16750-16759.	2.6	77
168	Carbon Monoxide as a Promoter for its own Oxidation on a Gold Electrode. Angewandte Chemie - International Edition, 2010, 49, 1241-1243.	13.8	77
169	Direct Reduction of Nitrite to N ₂ on a Pt(100) Electrode in Alkaline Media. Journal of the American Chemical Society, 2010, 132, 18042-18044.	13.7	77
170	Outlining the Scaling-Based and Scaling-Free Optimization of Electrocatalysts. ACS Catalysis, 2019, 9, 4218-4225.	11.2	76
171	Pattern formation during the electrodeposition of a silver-antimony alloy. Physica A: Statistical Mechanics and Its Applications, 1995, 213, 199-208.	2.6	75
172	Determinant Role of Electrogenerated Reactive Nucleophilic Species on Selectivity during Reduction of CO ₂ Catalyzed by Metalloporphyrins. Journal of the American Chemical Society, 2018, 140, 4826-4834.	13.7	75
173	Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure. Journal of the American Chemical Society, 2019, 141, 12071-12078.	13.7	72
174	Ab initio molecular dynamics simulation of liquid water and water–vapor interface. Journal of Chemical Physics, 2001, 115, 9815-9820.	3.0	71
175	Molecular dynamics simulations of solvent reorganization in electron-transfer reactions. Journal of Chemical Physics, 2001, 115, 8540-8546.	3.0	71
176	Electro-Oxidation of Glycerol on Platinum Modified by Adatoms: Activity and Selectivity Effects. Topics in Catalysis, 2014, 57, 1272-1276.	2.8	71
177	A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. ACS Catalysis, 2020, 10, 6900-6907.	11.2	71
178	A theory for adiabatic bond breaking electron transfer reactions at metal electrodes. Chemical Physics Letters, 1998, 282, 100-106.	2.6	70
179	Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2002, 532, 165-170.	3.8	70
180	Accounting for Bifurcating Pathways in the Screening for CO ₂ Reduction Catalysts. ACS Catalysis, 2017, 7, 7346-7351.	11.2	70

#	Article	IF	CITATIONS
181	Mixedâ€mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator. Journal of Chemical Physics, 1992, 97, 8250-8260.	3.0	69
182	Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode. Electrochimica Acta, 1995, 40, 1689-1696.	5.2	69
183	The electrochemical characterization of copper single-crystal electrodes in alkaline media. Journal of Electroanalytical Chemistry, 2013, 699, 6-9.	3.8	69
184	Competitive adsorption of hydrogen and bromide on Pt(100): Mean-field approximation vs. Monte Carlo simulations. Journal of Electroanalytical Chemistry, 2006, 588, 1-14.	3.8	68
185	The Influence of Surface Structure on Selectivity in the Ethanol Electro-oxidation Reaction on Platinum. Journal of Physical Chemistry Letters, 2010, 1, 1122-1125.	4.6	68
186	A mathematical model for current oscillations at the active-passive transition in metal electrodissolution. Journal of Electroanalytical Chemistry, 1993, 347, 31-48.	3.8	65
187	Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis. Topics in Catalysis, 2015, 58, 1153-1158.	2.8	65
188	Influence of the metal center of metalloprotoporphyrins on the electrocatalytic CO2 reduction to formic acid. Catalysis Today, 2017, 288, 37-47.	4.4	65
189	Electrocatalytic Hydrogenation and Deoxygenation of Glucose on Solid Metal Electrodes. ChemSusChem, 2013, 6, 455-462.	6.8	64
190	Surface Modification of Pt(100) for Electrocatalytic Nitrate Reduction to Dinitrogen in Alkaline Solution. Langmuir, 2015, 31, 3277-3281.	3.5	64
191	Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nature Communications, 2016, 7, 12653.	12.8	64
192	Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. The Journal of Physical Chemistry, 1991, 95, 4945-4947.	2.9	63
193	Solvent Reorganization in Electron and Ion Transfer Reactions near a Smooth Electrified Surface:  a Molecular Dynamics Study. Journal of the American Chemical Society, 2003, 125, 9840-9845.	13.7	63
194	Formation of volatile products during nitrate reduction on a Sn-modified Pt electrode in acid solution. Journal of Electroanalytical Chemistry, 2011, 662, 87-92.	3.8	63
195	Metal electrode–chemisorbate bonding: General influence of surface bond polarization on field-dependent binding energetics and vibrational frequencies. Journal of Chemical Physics, 2001, 115, 8193-8203.	3.0	62
196	Redox transitions of chromium, manganese, iron, cobalt and nickel protoporphyrins in aqueous solution. Physical Chemistry Chemical Physics, 2008, 10, 1023-1031.	2.8	62
197	Introductory Lecture : Electrocatalysis: theory and experiment at the interface. Faraday Discussions, 2008, 140, 11-24.	3.2	62
198	New insights into the catalytic activity of gold nanoparticles for CO oxidation in electrochemical media. Journal of Catalysis, 2014, 311, 182-189.	6.2	62

#	Article	IF	CITATIONS
199	On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1â€ ⁻ 0â€ ⁻ 0) in alkaline environment. Journal of Catalysis, 2018, 359, 82-91.	6.2	62
200	A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nature Catalysis, 2022, 5, 615-623.	34.4	62
201	Dual Reactivity of Step-Bound Carbon Monoxide during Oxidation on a Stepped Platinum Electrode in Alkaline Media. Journal of the American Chemical Society, 2009, 131, 5384-5385.	13.7	61
202	Electrocatalytic Reduction of Nitrate on Tin-modified Palladium Electrodes. Electrochimica Acta, 2014, 140, 518-524.	5.2	60
203	Optimizing the Electrochemical Reduction of CO ₂ to Formate: A State-of-the-Art Analysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 15430-15444.	6.7	60
204	Measuring local pH in electrochemistry. Current Opinion in Electrochemistry, 2021, 25, 100649.	4.8	60
205	Potential-dependent chemisorption of carbon monoxide on platinum electrodes: new insight from quantum-chemical calculations combined with vibrational spectroscopy. Journal of Electroanalytical Chemistry, 2001, 500, 344-355.	3.8	59
206	The influence of step geometry on the desorption characteristics of O2, D2, and H2O from stepped Pt surfaces. Journal of Chemical Physics, 2010, 132, 174705.	3.0	59
207	Heme Release in Myoglobinâ `DDAB Films and Its Role in Electrochemical NO Reduction. Journal of the American Chemical Society, 2005, 127, 16224-16232.	13.7	58
208	CO Electroxidation on Gold in Alkaline Media: A Combined Electrochemical, Spectroscopic, and DFT Study. Langmuir, 2010, 26, 12425-12432.	3.5	58
209	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	2.8	58
210	Interaction of halogens with Hg, Ag and Pt surfaces: a density functional study. Surface Science, 1999, 422, 118-131.	1.9	57
211	New insights into the mechanism of nitrite reduction on a platinum electrode. Journal of Electroanalytical Chemistry, 2010, 649, 59-68.	3.8	57
212	Self-promotion mechanism for CO electrooxidation on gold. Physical Chemistry Chemical Physics, 2010, 12, 9373.	2.8	57
213	Electrocatalytic Nitrate Reduction by a Cobalt Protoporphyrin Immobilized on a Pyrolytic Graphite Electrode. Langmuir, 2015, 31, 8495-8501.	3.5	57
214	Evidence for Decoupled Electron and Proton Transfer in the Electrochemical Oxidation of Ammonia on Pt(100). Journal of Physical Chemistry Letters, 2016, 7, 387-392.	4.6	57
215	Rational Design Rules for Molecular Water Oxidation Catalysts based on Scaling Relationships. Chemistry - A European Journal, 2017, 23, 16413-16418.	3.3	57
216	Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation. Electrochimica Acta, 2011, 56, 10645-10651.	5.2	56

#	Article	IF	CITATIONS
217	A Step Closer to the Electrochemical Production of Liquid Fuels. Angewandte Chemie - International Edition, 2014, 53, 10858-10860.	13.8	56
218	Cyanide adsorption on gold electrodes: a combined surface enhanced Raman spectroscopy and density functional theory study. Journal of Electroanalytical Chemistry, 2004, 563, 111-120.	3.8	55
219	Ultrathin Silicon Oxide Overlayers Enable Selective Oxygen Evolution from Acidic and Unbuffered pH-Neutral Seawater. ACS Catalysis, 2021, 11, 1316-1330.	11.2	54
220	Emergence of Potential-Controlled Cu-Nanocuboids and Graphene-Covered Cu-Nanocuboids under <i>Operando</i> CO ₂ Electroreduction. Nano Letters, 2021, 21, 2059-2065.	9.1	54
221	Electrocatalytic reduction of nitrite on transition and coinage metals. Electrochimica Acta, 2012, 68, 32-43.	5.2	52
222	Effects of Substrate and Polymer Encapsulation on CO ₂ Electroreduction by Immobilized Indium(III) Protoporphyrin. ACS Catalysis, 2018, 8, 4420-4428.	11.2	52
223	CO oxidation on stepped Rh[n (111)×(111)] single crystal electrodes: a voltammetric study. Journal of Electroanalytical Chemistry, 2004, 572, 79-91.	3.8	51
224	Oxidation of carbon monoxide on poly-oriented and single-crystalline platinum electrodes over a wide range of pH. Electrochimica Acta, 2011, 56, 2443-2449.	5.2	51
225	Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 9359-9363.	11.2	51
226	Double-layer structure of the Pt(111)–aqueous electrolyte interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	51
227	Coâ€adsorption of O and H ₂ O on Nanostructured Platinum Surfaces: Does OH Form at Steps?. Angewandte Chemie - International Edition, 2010, 49, 6572-6575.	13.8	50
228	Alkali Metal Cation Effects in Structuring Pt, Rh, and Au Surfaces through Cathodic Corrosion. ACS Applied Materials & Interfaces, 2018, 10, 39363-39379.	8.0	50
229	Effect of Step Density and Orientation on the Apparent pH Dependence of Hydrogen and Hydroxide Adsorption on Stepped Platinum Surfaces. Journal of Physical Chemistry C, 2018, 122, 16756-16764.	3.1	50
230	Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochemistry Communications, 2009, 11, 1105-1108.	4.7	49
231	Mechanism of electro-oxidation of carbon monoxide on stepped platinum electrodes in alkaline media: a chronoamperometric and kinetic modeling study. Physical Chemistry Chemical Physics, 2009, 11, 11437.	2.8	49
232	Electrocatalytic reduction of nitrite on a polycrystalline rhodium electrode. Journal of Catalysis, 2010, 275, 61-69.	6.2	49
233	Electrochemical Bond-Breaking Reactions:Â A Comparison of Large Scale Simulation Results with Analytical Theory. Journal of Physical Chemistry B, 1999, 103, 3442-3448.	2.6	47
234	Oxygen Reduction at a Cu-Modified Pt(111) Model Electrocatalyst in Contact with Nafion Polymer. ACS Catalysis, 2014, 4, 3772-3778.	11.2	47

#	Article	IF	CITATIONS
235	Combining experiment and theory for understanding electrocatalysis. Journal of Electroanalytical Chemistry, 2005, 574, 375-386.	3.8	46
236	Role of germanium in promoting the electrocatalytic reduction of nitrate on platinum: An FTIR and DEMS study. Journal of Electroanalytical Chemistry, 2007, 599, 167-176.	3.8	46
237	Why (1 0 0) Terraces Break and Make Bonds: Oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. Journal of the American Chemical Society, 2013, 135, 14329-14338.	13.7	46
238	Activity volcanoes for the electrocatalysis of homolytic and heterolytic hydrogen evolution. Journal of Solid State Electrochemistry, 2016, 20, 895-899.	2.5	46
239	Electrocatalytic Reduction of Nitrate on a Pt Electrode Modified by pâ€Block Metal Adatoms in Acid Solution. ChemCatChem, 2013, 5, 1773-1783.	3.7	45
240	Double-Stranded Water on Stepped Platinum Surfaces. Physical Review Letters, 2016, 116, 136101.	7.8	45
241	Enhancing the connection between computation and experiments in electrocatalysis. Nature Catalysis, 2022, 5, 374-381.	34.4	45
242	Mechanisms of the Oxidation of Carbon Monoxide and Small Organic Molecules at Metal Electrodes. , 0, , 159-207.		44
243	How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nature Communications, 2022, 13, 38.	12.8	44
244	On the mathematical unification of a class of electrochemical oscillators and their design procedures. Journal of Electroanalytical Chemistry, 1993, 352, 51-64.	3.8	43
245	Experimental and theoretical description of potentiostatic current oscillations during H2 oxidation. Journal of Electroanalytical Chemistry, 1995, 399, 185-196.	3.8	43
246	Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study. Journal of Electroanalytical Chemistry, 2004, 566, 53-62.	3.8	43
247	CO oxidation on stepped single crystal electrodes: A dynamic Monte Carlo study. Journal of Electroanalytical Chemistry, 2007, 607, 69-82.	3.8	43
248	Quantum and electrochemical interplays in hydrogenated graphene. Nature Communications, 2018, 9, 793.	12.8	43
249	Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology. Journal of Electroanalytical Chemistry, 2021, 880, 114750.	3.8	43
250	A model for bond-breaking electron transfer at metal electrodes. Chemical Physics Letters, 2006, 419, 421-425.	2.6	42
251	Combining Voltammetry and Ion Chromatography: Application to the Selective Reduction of Nitrate on Pt and PtSn Electrodes. Analytical Chemistry, 2013, 85, 7645-7649.	6.5	42
252	On the presence of surface bound hydroxyl species on polycrystalline Pt electrodes in the "hydrogen potential region―(0–0.4—V-RHE). Journal of Catalysis, 2018, 367, 332-337.	6.2	42

#	Article	IF	CITATIONS
253	Time-Resolved Local pH Measurements during CO ₂ Reduction Using Scanning Electrochemical Microscopy: Buffering and Tip Effects. Jacs Au, 2021, 1, 1915-1924.	7.9	42
254	Cubic MgH2 stabilized by alloying with transition metals: A density functional theory study. Acta Materialia, 2008, 56, 2948-2954.	7.9	41
255	A three-dimensional potential energy surface for dissociative adsorption and associative desorption at metal electrodes. Journal of Chemical Physics, 1998, 109, 1991-2001.	3.0	39
256	Adsorbate interactions and phase transitions at the stepped platinum/electrolyte interface: experiment compared with Monte Carlo simulations. Surface Science, 2001, 478, L339-L344.	1.9	39
257	ReaktivitÃædeskriptoren für die Aktivitävon molekularen MN4â€Katalysatoren zur Sauerstoffreduktion. Angewandte Chemie, 2016, 128, 14726-14738.	2.0	39
258	Ab initio molecular dynamics of hydroxyl–water coadsorption on Rh(111). Chemical Physics Letters, 2002, 359, 337-342.	2.6	38
259	CO oxidation on stepped Rh[n(111)×(111)] single crystal electrodes: Anion effects on CO surface mobility. Electrochemistry Communications, 2005, 7, 581-588.	4.7	38
260	Subsurface Oxygen on Pt(111) and Its Reactivity for CO Oxidation. Catalysis Letters, 2012, 142, 1-6.	2.6	38
261	A mechanistic investigation on the electrocatalytic reduction of aliphatic ketones at platinum. Journal of Catalysis, 2019, 369, 302-311.	6.2	38
262	Spectro-Electrochemical Examination of the Formation of Dimethyl Carbonate from CO and Methanol at Different Electrode Materials. Journal of the American Chemical Society, 2017, 139, 14693-14698.	13.7	37
263	Mediator-Free SECM for Probing the Diffusion Layer pH with Functionalized Gold Ultramicroelectrodes. Analytical Chemistry, 2020, 92, 2237-2243.	6.5	37
264	The Importance of Acid–Base Equilibria in Bicarbonate Electrolytes for CO ₂ Electrochemical Reduction and CO Reoxidation Studied on Au(<i>hkl</i>) Electrodes. Langmuir, 2021, 37, 5707-5716.	3.5	37
265	Hydrogen Oxidation and Hydrogen Evolution on a Platinum Electrode in Acetonitrile. ChemElectroChem, 2015, 2, 1612-1622.	3.4	36
266	Interconversions of nitrogen-containing species on Pt(100) and Pt(111) electrodes in acidic solutions containing nitrate. Electrochimica Acta, 2018, 271, 77-83.	5.2	36
267	Atomic-Scale Identification of the Electrochemical Roughening of Platinum. ACS Central Science, 2019, 5, 1920-1928.	11.3	36
268	Oscillatory behavior of the hydrogen peroxide reduction at gallium arsenide semiconductor electrodes. The Journal of Physical Chemistry, 1993, 97, 7337-7341.	2.9	35
269	Bond-breaking electron transfer of diatomic reactants at metal electrodes. Chemical Physics, 2008, 344, 195-201.	1.9	35
270	Interaction of hydrogen peroxide with a Pt(111) electrode. Electrochemistry Communications, 2012, 22, 153-156.	4.7	35

#	Article	IF	CITATIONS
271	Density Functional Theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces. Electrochimica Acta, 2013, 101, 244-253.	5.2	35
272	Selective Electrocatalysis on Platinum Nanoparticles with Preferential (100) Orientation Prepared by Cathodic Corrosion. Topics in Catalysis, 2014, 57, 255-264.	2.8	35
273	Electron Transfer and Ligand Binding to Cytochromecâ€~ Immobilized on Self-Assembled Monolayers. Langmuir, 2007, 23, 729-736.	3.5	34
274	Coâ€adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Singleâ€Crystal Electrode. Angewandte Chemie, 2017, 129, 15221-15225.	2.0	34
275	Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 303, 65-72.	0.1	33
276	A theory for amalgam forming electrode reactions. Journal of Electroanalytical Chemistry, 1998, 450, 83-94.	3.8	33
277	Modeling the butterfly: influence of lateral interactions and adsorption geometry on the voltammetry at () and () electrodes. Surface Science, 2002, 498, 105-115.	1.9	33
278	Structural Effects on Water Adsorption on Gold Electrodes. Journal of Physical Chemistry C, 2011, 115, 21249-21257.	3.1	33
279	In Situ Electrochemical AFM Imaging of a Pt Electrode in Sulfuric Acid under Potential Cycling Conditions. Journal of the American Chemical Society, 2018, 140, 13285-13291.	13.7	33
280	Initial stages of water solvation of stepped platinum surfaces. Physical Chemistry Chemical Physics, 2016, 18, 3416-3422.	2.8	32
281	A simplified approach to the modeling of wave propagation at electrode/electrolyte interfaces. Electrochimica Acta, 1993, 38, 1535-1544.	5.2	31
282	A Kramers reaction rate theory for electrochemical ion transfer reactions. Chemical Physics, 1996, 211, 123-133.	1.9	31
283	Electrochemistry of Pt (100) in alkaline media: A voltammetric study. Surface Science, 2010, 604, 1912-1918.	1.9	31
284	Effect of the Surface Structure of Gold Electrodes on the Coadsorption of Water and Anions. Journal of Physical Chemistry C, 2012, 116, 4786-4792.	3.1	31
285	Absence of diffuse double layer effect on the vibrational properties and oxidation of chemisorbed carbon monoxide on a Pt(111) electrode. Electrochimica Acta, 2018, 281, 127-132.	5.2	31
286	The Origin of Oscillations during Hydrogen Peroxide Reduction on GaAs Semiconductor Electrodes. The Journal of Physical Chemistry, 1995, 99, 3687-3696.	2.9	30
287	Monte Carlo simulations of ionic adsorption isotherms at single-crystal electrodes. Electrochimica Acta, 1998, 44, 1207-1212.	5.2	30
288	Lattice–gas modeling of electrochemical Langmuir–Hinshelwood surface reactions. Electrochimica Acta, 1999, 45, 645-651.	5.2	30

#	Article	IF	CITATIONS
289	Modelling the butterfly: () ordering on fcc(111) surfaces. Surface Science, 2004, 572, 247-260.	1.9	30
290	How Well Does Pt(211) Represent Pt[<i>n</i> (111) × (100)] Surfaces in Adsorption/Desorption?. Journal of Physical Chemistry C, 2015, 119, 13551-13560.	3.1	30
291	Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO–Solvent Gap. Journal of Physical Chemistry Letters, 2017, 8, 5344-5348.	4.6	30
292	Understanding the Voltammetry of Bulk CO Electrooxidation in Neutral Media through Combined SECM Measurements. Journal of Physical Chemistry Letters, 2020, 11, 9708-9713.	4.6	30
293	Cathodic Corrosion of a Bulk Wire to Nonaggregated Functional Nanocrystals and Nanoalloys. ACS Applied Materials & Interfaces, 2018, 10, 9532-9540.	8.0	29
294	Cathodic corrosion: 21st century insights into a 19th century phenomenon. Current Opinion in Electrochemistry, 2021, 26, 100653.	4.8	29
295	Highâ€Pressure CO Electroreduction at Silver Produces Ethanol and Propanol. Angewandte Chemie - International Edition, 2021, 60, 21732-21736.	13.8	29
296	Large-scale computer simulation of an electrochemical bond-breaking reaction. Chemical Physics Letters, 1999, 305, 94-100.	2.6	28
297	CO oxidation on stepped Rh[n(111)×(111)] single crystal electrodes: a chronoamperometric study. Journal of Electroanalytical Chemistry, 2005, 575, 39-51.	3.8	28
298	Additional evidence for heme release in myoglobin-DDAB films on pyrolitic graphite. Electrochemistry Communications, 2006, 8, 999-1004.	4.7	28
299	Long-range influence of steps on water adsorption on clean and D-covered Pt surfaces. Physical Chemistry Chemical Physics, 2015, 17, 8530-8537.	2.8	27
300	The reactivity of platinum microelectrodes. Physical Chemistry Chemical Physics, 2016, 18, 28451-28457.	2.8	27
301	Hydrogen adsorption on nano-structured platinum electrodes. Faraday Discussions, 2018, 210, 301-315.	3.2	27
302	Morphological Stability of Copper Surfaces under Reducing Conditions. ACS Applied Materials & Interfaces, 2021, 13, 48730-48744.	8.0	27
303	A one-parameter bifurcation analysis of the indium/thiocyanate electrochemical oscillator. The Journal of Physical Chemistry, 1992, 96, 5674-5675.	2.9	26
304	Hydrophobic interactions between water and pre-adsorbed D on the stepped Pt(533) surface. Physical Chemistry Chemical Physics, 2008, 10, 7169.	2.8	26
305	Alumina contamination through polishing and its effect on hydrogen evolution on gold electrodes. Electrochimica Acta, 2019, 325, 134915.	5.2	26
306	Adsorption processes on a Pd monolayer-modified Pt(111) electrode. Chemical Science, 2020, 11, 1703-1713.	7.4	26

#	Article	IF	CITATIONS
307	Tailoring the Electrocatalytic Activity and Selectivity of Pt(111) through Cathodic Corrosion. ACS Catalysis, 2020, 10, 15104-15113.	11.2	26
308	Hydroxylamine Electrochemistry at Low-Index Single-Crystal Platinum Electrodes in Acidic Media. Journal of Physical Chemistry B, 2004, 108, 8294-8304.	2.6	25
309	A detailed TPD study of H2O and pre-adsorbed O on the stepped Pt(553) surface. Physical Chemistry Chemical Physics, 2011, 13, 1629-1638.	2.8	25
310	CO electrooxidation on Sn-modified Pt single crystals in acid media. Journal of Electroanalytical Chemistry, 2017, 800, 32-38.	3.8	25
311	Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Angewandte Chemie, 2019, 131, 13133-13137.	2.0	25
312	Hydrogen-Induced Step-Edge Roughening of Platinum Electrode Surfaces. Journal of Physical Chemistry Letters, 2019, 10, 6842-6849.	4.6	25
313	Modeling the Gouy–Chapman Diffuse Capacitance with Attractive Ion–Surface Interaction. Journal of Physical Chemistry C, 2021, 125, 16664-16673.	3.1	25
314	Influence of the electrolyte concentration on the size and shape of platinum nanoparticles synthesized by cathodic corrosion. Electrochimica Acta, 2013, 112, 913-918.	5.2	24
315	Selective Electrocatalytic Oxidation of Sorbitol to Fructose and Sorbose. ChemSusChem, 2015, 8, 970-973.	6.8	24
316	Electrochemical oxidation of Pt(111) beyond the place-exchange model. Electrochimica Acta, 2022, 407, 139881.	5.2	24
317	Effect of pore diameter and length on electrochemical CO ₂ reduction reaction at nanoporous gold catalysts. Chemical Science, 2022, 13, 3288-3298.	7.4	24
318	Temperature Dependence of the Transfer Coefficient of Simple Electrochemical Redox Reactions Due to Slow Solvent Dynamics. Journal of Physical Chemistry B, 1997, 101, 3168-3173.	2.6	23
319	Direct and Broadband Plasmonic Charge Transfer to Enhance Water Oxidation on a Gold Electrode. ACS Nano, 2021, 15, 3188-3200.	14.6	23
320	Quantum effects in adiabatic electrochemical electron-transfer reactions. Chemical Physics, 1997, 220, 95-114.	1.9	22
321	Probing the Fen+/Fe(nâ^`1)+ redox potential of Fe phthalocyanines and Fe porphyrins as a reactivity descriptor in the electrochemical oxidation of cysteamine. Journal of Electroanalytical Chemistry, 2018, 819, 502-510.	3.8	22
322	Understanding the role of mass transport in tuning the hydrogen evolution kinetics on gold in alkaline media. Journal of Chemical Physics, 2021, 155, 134705.	3.0	22
323	Adiabatic electrochemical electron-transfer reactions involving frequency changes of inner-sphere modes. Electrochemistry Communications, 1999, 1, 402-405.	4.7	21
324	Reorganization of Immobilized Horse and Yeast CytochromecInduced by pH Changes or Nitric Oxide Binding. Langmuir, 2007, 23, 3832-3839.	3.5	21

#	Article	IF	CITATIONS
325	Ethanol Oxidation on Snâ€modified Pt Singleâ€Crystal Electrodes: New Mechanistic Insights from Onâ€line Electrochemical Mass Spectrometry. ChemElectroChem, 2016, 3, 2196-2201.	3.4	21
326	Anisotropic etching of rhodium and gold as the onset of nanoparticle formation by cathodic corrosion. Faraday Discussions, 2016, 193, 207-222.	3.2	21
327	Examination and prevention of ring collection failure during gas-evolving reactions on a rotating ring-disk electrode. Journal of Electroanalytical Chemistry, 2019, 850, 113363.	3.8	21
328	Competition and selectivity during parallel evolution of bromine, chlorine and oxygen on IrOx electrodes. Journal of Catalysis, 2020, 389, 99-110.	6.2	21
329	Interaction between H2O and Preadsorbed D on the Stepped Pt(553) Surface. Journal of Physical Chemistry C, 2012, 116, 18706-18712.	3.1	20
330	Electrocatalysis under Cover: Enhanced Hydrogen Evolution via Defective Graphene-Covered Pt(111). ACS Catalysis, 2021, 11, 10892-10901.	11.2	20
331	Size Effects in Electrocatalysis of Fuel Cell Reactions on Supported Metal Nanoparticles. , 0, , 507-566.		19
332	Controlling the size of platinum nanoparticles prepared by cathodic corrosion. Electrochimica Acta, 2013, 110, 796-800.	5.2	19
333	Acetonitrile Adsorption on Pt Single-Crystal Electrodes and Its Effect on Oxygen Reduction Reaction in Acidic and Alkaline Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 2300-2313.	3.1	19
334	A DEMS approach for the direct detection of CO formed during electrochemical CO2 reduction. Journal of Electroanalytical Chemistry, 2020, 875, 113842.	3.8	19
335	Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32267-32277.	7.1	19
336	Probing the local activity of CO ₂ reduction on gold gas diffusion electrodes: effect of the catalyst loading and CO ₂ pressure. Chemical Science, 2021, 12, 15682-15690.	7.4	19
337	An off-lattice model for Br electrodeposition on Au(100): from DFT to experiment. Surface Science, 2004, 563, 169-182.	1.9	18
338	Rate laws for reductive stripping of NO adlayers at single-crystal platinum electrodes as deduced from transient experiments. Surface Science, 2005, 584, 258-268.	1.9	18
339	Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells: A Brief History and a Critical Examination of Present Theory and Diagnostics. , 0, , 1-30.		18
340	The Influence of Solution-Phase HNO ₂ Decomposition on the Electrocatalytic Nitrite Reduction at a Heminâ~'Pyrolitic Graphite Electrode. Langmuir, 2010, 26, 12418-12424.	3.5	18
341	Effect of the Surface Structure of Pt(100) and Pt(110) on the Oxidation of Carbon Monoxide in Alkaline Solution: an FTIR and Electrochemical Study. Electrocatalysis, 2011, 2, 242-253.	3.0	18
342	CO ₂ electroreduction on bimetallic Pd–In nanoparticles. Catalysis Science and Technology, 2020, 10, 4264-4270.	4.1	18

#	Article	IF	CITATIONS
343	Electric-Double-Layer-Modulation Microscopy. Physical Review Applied, 2020, 13, .	3.8	18
344	The Interaction between H ₂ O and Preadsorbed O on the Stepped Pt(533) Surface. Journal of Physical Chemistry C, 2010, 114, 18953-18960.	3.1	17
345	Step-Type Selective Oxidation of Platinum Surfaces. Journal of Physical Chemistry C, 2016, 120, 22927-22935.	3.1	17
346	Influence of water on the hydrogen evolution reaction on a gold electrode in acetonitrile solution. Journal of Electroanalytical Chemistry, 2017, 793, 18-24.	3.8	17
347	Electrochemical Conversion of CO ₂ into Organic Carbonates—Products and Intermediates. ACS Sustainable Chemistry and Engineering, 2019, 7, 10716-10723.	6.7	17
348	In Situ AFM Imaging of Platinum Electrode Surface during Oxidation–Reduction Cycles in Alkaline Electrolyte. ACS Applied Energy Materials, 2020, 3, 597-602.	5.1	17
349	Understanding hydrogen evolution reaction in bicarbonate buffer. Journal of Catalysis, 2022, 405, 346-354.	6.2	17
350	Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 173-182.	11.2	17
351	Electrochemical characterization of nano-sized gold electrodes fabricated by nano-lithography. Journal of Electroanalytical Chemistry, 2012, 666, 19-24.	3.8	16
352	Cellobiose Hydrolysis and Decomposition by Electrochemical Generation of Acid and Hydroxyl Radicals. ChemSusChem, 2012, 5, 1935-1943.	6.8	16
353	Influence of beryllium cations on the electrochemical oxidation of methanol on stepped platinum surfaces in alkaline solution. Surface Science, 2015, 631, 267-271.	1.9	16
354	Influence of Van der Waals Interactions on the Solvation Energies of Adsorbates at Ptâ€Based Electrocatalysts. ChemPhysChem, 2019, 20, 2968-2972.	2.1	16
355	Cathodic Disintegration as an Easily Scalable Method for the Production of Sn- and Pb-Based Catalysts for CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 15603-15610.	6.7	16
356	Electrochemical Reduction of the Simplest Monosaccharides: Dihydroxyacetone and Glyceraldehyde. ACS Catalysis, 2020, 10, 13895-13903.	11.2	16
357	Molecular Dynamics Simulation of Solvent Reorganization in Ion Transfer Reactions near a Smooth and Corrugated Surface. Journal of Physical Chemistry B, 2004, 108, 3824-3827.	2.6	15
358	Mass-transport-limited oxidation of formic acid on a Pd ML Pt(100) electrode in perchloric acid. Electrochemistry Communications, 2017, 82, 155-158.	4.7	15
359	The dualism between adatom- and vacancy-based single crystal growth models. Nature Communications, 2019, 10, 5233.	12.8	15
360	Thermodynamics of the formation of surface PtO2 stripes on Pt(111) in the absence of subsurface oxygen. Physical Chemistry Chemical Physics, 2020, 22, 10634-10640.	2.8	15

#	Article	IF	CITATIONS
361	Interfacial pH Measurements Using a Rotating Ringâ€Disc Electrode with a Voltammetric pH Sensor. ChemElectroChem, 2022, 9, .	3.4	15
362	Some simple bifurcation sets of an extended Van der Pol model and their relation to chemical oscillators. Journal of Chemical Physics, 1995, 102, 5278-5287.	3.0	14
363	Ab initio and classical molecular dynamics studies of electrode reactions. Electrochimica Acta, 2003, 48, 3751-3758.	5.2	14
364	Tuning Hydrophobicity of Platinum by Small Changes in Surface Morphology. Physical Review Letters, 2011, 107, 146103.	7.8	14
365	Electrocatalytic enhancement of formic acid oxidation reaction by acetonitrile on well-defined platinum surfaces. Electrochimica Acta, 2019, 295, 835-845.	5.2	14
366	Double Layer at the Pt(111)–Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy–Chapman Screening. Angewandte Chemie, 2020, 132, 721-725.	2.0	14
367	Dissociative Adsorption of Acetone on Platinum Single-Crystal Electrodes. Journal of Physical Chemistry C, 2021, 125, 6643-6649.	3.1	14
368	Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catalysis, 2021, 11, 9904-9915.	11.2	14
369	The Effect of Temperature on the Cationâ€Promoted Electrochemical CO ₂ Reduction on Gold. ChemElectroChem, 2022, 9, .	3.4	14
370	Electrochemistry of single nanoparticles: general discussion. Faraday Discussions, 2016, 193, 387-413.	3.2	13
371	Surface Structure Dependence in Desorption and Crystallization of Thin Interfacial Water Films on Platinum. Journal of Physical Chemistry Letters, 2016, 7, 1682-1685.	4.6	13
372	The Interrelated Effect of Cations and Electrolyte pH on the Hydrogen Evolution Reaction on Gold Electrodes in Alkaline Media. Angewandte Chemie, 2021, 133, 13564-13574.	2.0	13
373	Modulation of the selectivity of CO2 to CO electroreduction in palladium rich Palladium-Indium nanoparticles. Journal of Catalysis, 2021, 402, 229-237.	6.2	13
374	From Pollutant to Chemical Feedstock: Valorizing Carbon Dioxide through Photo- and Electrochemical Processes. Accounts of Chemical Research, 2022, 55, 931-932.	15.6	13
375	Spectroscopic Investigation of the Electrosynthesis of Diphenyl Carbonate from CO and Phenol on Gold Electrodes. ACS Catalysis, 2018, 8, 3087-3090.	11.2	12
376	Electrochemical CO ₂ Reduction on Gas Diffusion Electrodes: Enhanced Selectivity of In–Bi Bimetallic Particles and Catalyst Layer Optimization through a Design of Experiment Approach. ACS Applied Energy Materials, 2022, 5, 1720-1730.	5.1	12
377	Methanol, Formaldehyde, and Formic Acid Adsorption/Oxidation on a Carbon-Supported Pt Nanoparticle Fuel Cell Catalyst: A Comparative Quantitative DEMS Study. , 0, , 411-464.		11
378	Clues for the Molecular-Level Understanding of Electrocatalysis on Single-Crystal Platinum Surfaces Modified byp-Block Adatoms. , 0, , 209-244.		11

#	Article	IF	CITATIONS
379	Electrochemical Stripping of Atomic Oxygen on Single-Crystalline Platinum: Bridging Gas-Phase and Electrochemical Oxidation. Journal of Physical Chemistry Letters, 2017, 8, 1152-1156.	4.6	11
380	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50.		11
381	Local structure and composition of PtRh nanoparticles produced through cathodic corrosion. Physical Chemistry Chemical Physics, 2017, 19, 10301-10308.	2.8	11
382	Voltammetric Study of Tin Electrodeposition on Polycrystalline Gold from Sulfuric and Methanesulfonic Acid. Journal of the Electrochemical Society, 2019, 166, D283-D289.	2.9	11
383	Recent Developments in the Electrocatalysis of the O2 Reduction Reaction. , 0, , 271-315.		10
384	Elucidation of temperature-programmed desorption of high-coverage hydrogen on Pt(211), Pt(221), Pt(533) and Pt(553) based on density functional theory calculations. Physical Chemistry Chemical Physics, 2019, 21, 17142-17151.	2.8	10
385	Competition and Interhalogen Formation During Parallel Electrocatalytic Oxidation of Bromide and Chloride on Pt. Journal of the Electrochemical Society, 2020, 167, 046505.	2.9	10
386	Effects of Adsorbed OH on Pt(100)/Water Interfacial Structures and Potential. Journal of Physical Chemistry C, 2021, 125, 21571-21579.	3.1	10
387	Clean and Reproducible Voltammetry of Copper Single Crystals with Prominent Facet-Specific Features Using Induction Annealing. Journal of the Electrochemical Society, 2021, 168, 096510.	2.9	10
388	Evidence for heme release in layer-by-layer assemblies of myoglobin and polystyrenesulfonate on pyrolitic graphite. Journal of Biological Inorganic Chemistry, 2007, 12, 761-766.	2.6	9
389	Bioinspired electrocatalytic reduction of nitric oxide by immobilized heme groups. Comptes Rendus Chimie, 2007, 10, 414-420.	0.5	9
390	Metalloporphyrin Catalysts of Oxygen Reduction. , 0, , 637-693.		9
391	Anisotropic Cathodic Corrosion of Gold Electrodes in the Absence and Presence of Carbon Monoxide. Journal of Physical Chemistry C, 2020, 124, 28539-28554.	3.1	9
392	Quantitative theoretical study of the speed of propagation of chemical waves in the Belousov-Zhabotinskii reaction. The Journal of Physical Chemistry, 1990, 94, 8135-8139.	2.9	8
393	Stripping Voltammetry and Chronoamperometry of an Adsorbed Species with Repulsive Lateral Interactions. Zeitschrift Fur Physikalische Chemie, 2003, 217, 547-556.	2.8	8
394	Ab Initio Atomistic Thermodynamics for Fuel Cell Catalysis. , 0, , 129-158.		8
395	The electro-oxidation of dimethylamine borane: Part 2, in situ FTIR on single-crystal gold electrodes. Electrochimica Acta, 2011, 56, 7637-7643.	5.2	8
396	Electrochemical formation and surface characterisation of Cu2â^'xTe thin films with adjustable content of Cu. RSC Advances, 2013, 3, 21648.	3.6	8

#	Article	IF	CITATIONS
397	Role of Peroxide in the Catalytic Activity of Gold for Oxidation Reactions in Aqueous Media: An Electrochemical Study. ChemCatChem, 2014, 6, 79-81.	3.7	8
398	Reprint of "Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphology― Journal of Electroanalytical Chemistry, 2021, 896, 115609.	3.8	8
399	Support and Particle Size Effects in Electrocatalysis. , 0, , 567-592.		7
400	Electrocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 13567.	2.8	7
401	Electrooxidation of C ₄ Polyols on Platinum Single-Crystals: A Computational and Electrochemical Study. Journal of Physical Chemistry C, 2020, 124, 14745-14751.	3.1	7
402	The effect of naphthalene-based additives on tin electrodeposition on a gold electrode. Electrochimica Acta, 2021, 368, 137606.	5.2	7
403	A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. Journal of Physics Condensed Matter, 2021, 33, 204001.	1.8	7
404	Isotherms of ionic adsorption at metal electrodes with coverage dependent lateral interactions due to mutual depolarization. Surface Science, 1998, 395, L196-L200.	1.9	6
405	Mixedâ€Mode Oscillations in the Peroxodisulfate Reduction on Platinum and Gold Rotating Disk Electrodes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 497-500.	0.9	5
406	Electrocatalysis at Platinum and Bimetallic Alloys. , 0, , 317-341.		5
407	Mechanistic Study of the Electrosynthesis of Propylene Carbonate from Propylene Oxide and CO ₂ on Copper Electrodes. ChemElectroChem, 2019, 6, 2917-2923.	3.4	5
408	Structure Sensitivity of Acetophenone Reduction on Palladium-Modified Platinum Single-Crystal Electrodes. Journal of Physical Chemistry C, 2020, 124, 25884-25891.	3.1	5
409	Structure sensitivity of electrochemical adsorption and reduction of acetol on noble metal electrodes. Electrochimica Acta, 2021, 391, 138911.	5.2	5
410	Electrocatalysis for Fuel Cells at Enzyme-Modified Electrodes. , 0, , 593-635.		4
411	Electrochemical Electron Transfer: From Marcus Theory to Electrocatalysis. , 0, , 31-55.		4
412	Oxidation reactions in chromium(III) formate electrolytes at platinum and at a catalytic mixed metal oxide coating of iridium oxide and tantalum oxide. Electrochimica Acta, 2016, 213, 194-200.	5.2	4
413	Special Topic on Interfacial Electrochemistry and Photo(electro)catalysis. Journal of Chemical Physics, 2019, 150, 041401.	3.0	4

414 Ab Initio Quantum-Chemical Calculations in Electrochemistry. , 2004, , 51-130.

3

#	Article	IF	CITATIONS
415	Electrocatalysis for the Direct Alcohol Fuel Cell. , 0, , 343-373.		3
416	Molecular-Level Modeling of Anode and Cathode Electrocatalysis for PEM Fuel Cells. Topics in Applied Physics, 2009, , 485-508.	0.8	3
417	Introduction: Computational Electrochemistry. Chemical Reviews, 2022, 122, 10579-10580.	47.7	3
418	Broadband Sum Frequency Generation Studies of Surface Intermediates Involved in Fuel Cell Electrocatalysis. , 0, , 375-409.		2
419	First-Principles Simulation of the Active Sites and Reaction Environment in Electrocatalysis. , 0, , 93-128.		2
420	Electrochemistry at Well-Characterized Bimetallic Surfaces. , 0, , 245-269.		2
421	CHAPTER 12. Key Intermediates in the Hydrogenation and Electrochemical Reduction of CO2. RSC Energy and Environment Series, 0, , 333-358.	0.5	2
422	The Effect of Naphthaleneâ€Based Additives on the Kinetics of Tin Electrodeposition on Boronâ€Doped Diamond Electrodes. ChemElectroChem, 2021, 8, 2034-2043.	3.4	2
423	Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes. Electrochimica Acta, 2017, 248, 409-415.	5.2	2
424	Electrolyte buffering species as oxygen donor shuttles in CO electrooxidation. Physical Chemistry Chemical Physics, 2022, 24, 2022-2031.	2.8	2
425	Production of Gas Diffusion Layers with Tunable Characteristics. ACS Omega, 2022, 7, 23041-23049.	3.5	2
426	Catalysis of Redox Reactions. , 2013, , 459-474.		1
427	ELECTROCHEMISTRY FOR THE PRODUCTION OF FUELS, CHEMICALS AND MATERIALS. , 2018, , .		1
428	Selective electrocatalytic hydrogenation of α,β-unsaturated ketone on (111)-oriented Pd and Pt electrodes. Electrochimica Acta, 2022, 417, 140264.	5.2	1
429	Theory and Modeling of Catalytic and Electrocatalytic Reactions. , 2003, , .		Ο
430	Innenrücktitelbild: Theoretical Considerations on the Electroreduction of CO to C2Species on Cu(100) Electrodes (Angew. Chem. 28/2013). Angewandte Chemie, 2013, 125, 7463-7463.	2.0	0
431	Frontispiece: Rational Design Rules for Molecular Water Oxidation Catalysts based on Scaling Relationships. Chemistry - A European Journal, 2017, 23, .	3.3	0
432	Cyclic voltammetry study of trivalent basic chromium sulphate electrolytes contaminated with sulphite. Electrochimica Acta, 2018, 269, 700-705.	5.2	0

#	Article	IF	CITATIONS
433	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	3.2	0
434	Highâ€Pressure CO Electroreduction at Silver Produces Ethanol and Propanol. Angewandte Chemie, 2021, 133, 21900-21904.	2.0	0
435	Electrochemical Hydrogen Production. , 2012, , 819-832.		0
436	Electrolyte effects in CO2 electroreduction. , 0, , .		0