Yutaka Ohsedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8503576/publications.pdf

Version: 2024-02-01

40 700 papers citations

citations

516710

26 g-index

42 all docs 42 docs citations 42 times ranked

16

h-index

813 citing authors

#	Article	IF	CITATIONS
1	Stearoylamidoâ€Dâ€Glucamine Hydrogelators for Thixotropic Molecular Gels with Tunable Softness by Chemical Modification. Chemistry - an Asian Journal, 2022, 17, .	3.3	3
2	Structure-regulated tough elastomers of liquid crystalline inorganic nanosheet/polyurethane nanocomposites. Materials Advances, 2021, 2, 1035-1042.	5.4	4
3	Anisotropic Self-Oscillating Reaction in Liquid Crystalline Nanosheet Hydrogels. Journal of Physical Chemistry B, 2018, 122, 2957-2961.	2.6	8
4	Liquid Crystalline Colloidal Mixture of Nanosheets and Rods with Dynamically Variable Length. ACS Omega, 2018, 3, 14869-14874.	3.5	7
5	Thixotropic stiff hydrogels from a new class of oleoyl- <scp>d</scp> -glucamine-based low-molecular-weight gelators. RSC Advances, 2017, 7, 41686-41692.	3.6	7
6	Synthesis of an electronically conductive hydrogel from a hydrogelator and a conducting polymer. New Journal of Chemistry, 2017, 41, 9602-9606.	2.8	11
7	New composite thixotropic hydrogel composed of a polymer hydrogelator and a nanosheet. Royal Society Open Science, 2017, 4, 171117.	2.4	7
8	Colloidal Nanosheets. Nanostructure Science and Technology, 2017, , 201-260.	0.1	5
9	Low-Molecular-Weight Gelators as Base Materials for Ointments. Gels, 2016, 2, 13.	4.5	29
10	Low-molecular-weight organogelators as functional materials for oil spill remediation. Polymers for Advanced Technologies, 2016, 27, 704-711.	3.2	54
11	Long-chain alkylamide-derived oil gels: mixing induced onset of thixotropy and application in sustained drug release. New Journal of Chemistry, 2015, 39, 6482-6490.	2.8	22
12	A new family of light-emissive symmetric squarylium dyes in the solid state. Dyes and Pigments, 2015, 122, 134-138.	3.7	24
13	A new water-soluble aromatic polyamide hydrogelator with thixotropic properties. RSC Advances, 2015, 5, 82772-82776.	3.6	13
14	Improved mechanical properties of polyacrylamide hydrogels created in the presence of low-molecular-weight hydrogelators. RSC Advances, 2015, 5, 90010-90013.	3.6	14
15	Synthesis and electrochemical properties of symmetric squarylium dyes containing diarylamine. Dyes and Pigments, 2014, 101, 261-269.	3.7	14
16	Creation of thixotropic multicomponent alkylamide organogels containing non-volatile oil as potential drug release host materials. RSC Advances, 2014, 4, 35484-35488.	3.6	20
17	A new composite thixotropic hydrogel composed of a low-molecular-weight hydrogelator and a nanosheet. RSC Advances, 2014, 4, 44837-44840.	3.6	14
18	Onset of mixing-induced thixotropy in hydrogels by mixing two homologues of low-molecular-weight hydrogelators. RSC Advances, 2014, 4, 43560-43563.	3.6	15

#	Article	IF	Citations
19	N-Alkylamido- <scp>d</scp> -glucamine-based gelators for the generation of thixotropic gels. RSC Advances, 2014, 4, 48554-48558.	3.6	18
20	Synthesis of a new squarylium alkylamide family and its organogelation ability. New Journal of Chemistry, 2013, 37, 2874.	2.8	25
21	Mixing induced thixotropy of a two-component system of alkylurea organogelators having different alkyl chains. New Journal of Chemistry, 2013, 37, 2250.	2.8	26
22	Hydrogel formed by a simple squaric acid derivative. RSC Advances, 2013, 3, 3844.	3.6	13
23	Improved mechanical properties of alkylamide organogels via a mixing enhancement effect. RSC Advances, 2013, 3, 5803.	3.6	15
24	Mixing Enhancement Effect of Low-molecular-weight Organogelators for Thixotropic Organogel Creation. Chemistry Letters, 2013, 42, 363-365.	1.3	20
25	Alkylhydrazide Derivatives as New Organogelators and Their Potential Ability to Gel Electrolytes. Bulletin of the Chemical Society of Japan, 2013, 86, 671-673.	3.2	21
26	Mixing Enhancement Effect of Low-Molecular-Weight Gelators. Journal of the Japan Society of Colour Material, 2013, 86, 375-379.	0.1	0
27	Hole-transporting and emitting pendant polymers for organic electroluminescent devices. , 2006, , .		0
28	Shear-Induced Mesophase Organization of Polyanionic Rigid Rods in Aqueous Solution. Langmuir, 2004, 20, 6518-6520.	3.5	25
29	Surface Friction of Hydrogels with Well-Defined Polyelectrolyte Brushes. Langmuir, 2004, 20, 6549-6555.	3.5	75
30	Synthesis, Properties, and Applications of Photochromic Amorphous Molecular Materials and Electrochromic Polymers. ACS Symposium Series, 2004, , 173-186.	0.5	0
31	Study on Doping Behaviors of Vinyl Hydrogels with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2003, 204, 2142-2146.	2.2	0
32	Water-Swollen Hydrogels with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2003, 204, 661-665.	2.2	1
33	Development of a new class of hole-transporting and emitting vinyl polymers and their application in organic electroluminescent devices. Organic Electronics, 2003, 4, 49-59.	2.6	49
34	Synthesis and electrochromic properties of a new family of methacrylate polymers containing pendant oligothiophenes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2471-2484.	2.1	22
35	Ï€å±å½¹ç³»é«~ã^†åã®å•̂æ^ãƒ»ç‰ ©æ€§ãŠã,^ã•³æ©Ÿèƒ½ææ–™ã¸ã®å¿œç"¨. Kobunshi, 2002, 51, 66-70.	0.0	4
36	Crystalline Structure and Thermal Behavior of Water-Soluble Copolymers with Pendant Terthiophenes. Macromolecular Chemistry and Physics, 2002, 203, 176-181.	2.2	1

3

YUTAKA OHSEDO

#	Article	IF	CITATION
37	Electrochromic properties of new methacrylate copolymers containing pendant oligothiophene and oligo(ethyleneoxide) moieties in the presence of a polymer–gel electrolyte. Electrochimica Acta, 2000, 45, 1543-1547.	5.2	17
38	Synthesis and electrochromic properties of methacrylate copolymers containing pendant terthiophene and oligo(ethyleneoxide) moieties. Synthetic Metals, 1999, 102, 969-970.	3.9	12
39	Synthesis of a Novel Family of Electrochemically-Doped Vinyl Polymers Containing Pendant Oligothiophenes and Their Electrical and Electrochromic Properties. Macromolecules, 1997, 30, 380-386.	4.8	68
40	Synthesis and electrochromic properties of a methacrylate polymer containing pendant terthiophene. Synthetic Metals, 1996, 81, 157-162.	3.9	16