Daoyong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/850153/publications.pdf

Version: 2024-02-01

		172457	168389
71	2,890	29	53
papers	citations	h-index	g-index
75	75	75	3880
75	75	75	3000
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Noncovalent Postmodification Guided Reversible Compartmentalization of Polymeric Micelles. ACS Macro Letters, 2022, 11, 687-692.	4.8	1
2	Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from Macromolecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 5030-5039.	4.6	8
3	Fabrication of the Polymersomes with Unique and Even Nonequilibrium Morphologies. Macromolecular Rapid Communications, 2021, 42, 2000504.	3.9	2
4	Polydiacetylene and its composites with long effective conjugation lengths and tunable third-order nonlinear optical absorption. Polymer Chemistry, 2021, 12, 3257-3263.	3.9	6
5	Yolk–Shell Structured Nickel Cobalt Sulfide and Carbon Nanotube Composite for High-Performance Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 5342-5351.	5.1	25
6	A novel worm-like micelles@MOFs precursor for constructing hierarchically porous CoP/N-doped carbon networks towards efficient hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 600, 872-881.	9.4	15
7	ZIF-67-derived Co@N-PC anchored on tracheid skeleton from sawdust with micro/nano composite structures for boosted methylene blue degradation. Separation and Purification Technology, 2021, 278, 119489.	7.9	35
8	Heavily superparamagnetic magnetite-loaded polymeric worm-like micelles that have an ultrahigh <i>T</i> ₂ relaxivity. Polymer Chemistry, 2020, 11, 6134-6138.	3.9	5
9	Strictly sparse surface modification and its application for endowing nanoparticles with an exact $\hat{a} \in \infty$ valency $\hat{a} \in \mathbb{R}$ Chemical Communications, 2020, 56, 15553-15556.	4.1	O
10	Fabrication of melamine/Tb3+-intercalated polydiacetylene nanosheets and their thermochromic reversibility. Chinese Journal of Chemical Physics, 2020, 33, 357-364.	1.3	1
11	<i>In situ</i> synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors. Nanoscale, 2020, 12, 17738-17745.	5.6	43
12	A general method to greatly enhance ultrasound-responsiveness for common polymeric assemblies. Polymer Chemistry, 2020, 11 , 3296 - 3304 .	3.9	6
13	Multistage Polymerization Design for g-C ₃ N ₄ Nanosheets with Enhanced Photocatalytic Activity by Modifying the Polymerization Process of Melamine. ACS Omega, 2019, 4, 17148-17159.	3 . 5	50
14	Endowing Polymeric Assemblies with Unique Properties and Behaviors by Incorporating Versatile Nanogels in the Shell. ACS Macro Letters, 2019, 8, 1222-1226.	4.8	4
15	A network of porous carbon/ZnCo ₂ O ₄ nanotubes derived from shell-hybridized worm-like micelles for lithium storage. Journal of Materials Chemistry A, 2019, 7, 22642-22649.	10.3	9
16	Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon, 2019, 150, 311-318.	10.3	112
17	Antifouling Wood Matrix with Natural Water Transfer and Microreaction Channels for Water Treatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 6782-6791.	6.7	40
18	From Tunable DNA/Polymer Self-Assembly to Tailorable and Morphologically Pure Core–Shell Nanofibers. Langmuir, 2018, 34, 15350-15359.	3.5	14

#	Article	IF	CITATIONS
19	Efficient Fabrication of Pure, Single-Chain Janus Particles through Their Exclusive Self-Assembly in Mixtures with Their Analogues. ACS Macro Letters, 2018, 7, 1278-1282.	4.8	20
20	Recent Progress in Flexible Fibrous Batteries. ChemElectroChem, 2018, 5, 3127-3137.	3.4	16
21	Precise surface structure of nanofibres with nearly atomic-level precision. Chemical Communications, 2018, 54, 11084-11087.	4.1	2
22	Multiheteroatom-Doped Porous Carbon Catalyst for Oxygen Reduction Reaction Prepared using 3D Network of ZIF-8/Polymeric Nanofiber as a Facile-Doping Template. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21083-21088.	8.0	41
23	Solution-Based Thermodynamically Controlled Conversion from Diblock Copolymers to Janus Nanoparticles. ACS Macro Letters, 2017, 6, 580-585.	4.8	20
24	Polydiacetyleneâ€Tb ³⁺ Nanosheets of Which Both the Color and the Fluorescence Can Be Reversibly Switched between Two Colors. Chinese Journal of Chemistry, 2017, 35, 1678-1686.	4.9	4
25	Solutionâ€Based Fabrication of Narrowâ€Disperse ABC Threeâ€Segment and Î~â€Shaped Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 6182-6186.	13.8	43
26	Self-assembly of polymeric micelles into complex but regular superstructures based on highly controllable core–core fusion between the micelles. Soft Matter, 2016, 12, 4891-4895.	2.7	6
27	Recovering 3D images of polymeric nanofibers in solution through theoretical analysis and Monte-Carlo simulations of their 2D TEM images. Soft Matter, 2016, 12, 4590-4594.	2.7	1
28	Reversible thermochromism via hydrogen-bonded cocrystals of polydiacetylene and melamine. Polymer, 2016, 105, 440-448.	3.8	12
29	A one-pot approach using recyclable template to prepare dual-responsive yolk–shell or Janus-like nanoparticles. Polymer Chemistry, 2016, 7, 7170-7176.	3.9	7
30	Efficient synthesis of narrowly dispersed amphiphilic double-brush copolymers through the polymerization reaction of macromonomer micelle emulsifiers at the oil–water interface. Polymer Chemistry, 2016, 7, 4476-4485.	3.9	28
31	Solutionâ∈Based Fabrication of Narrowâ∈Disperse ABC Threeâ∈Segment and Î~â∈Shaped Nanoparticles. Angewandte Chemie, 2016, 128, 6290-6294.	2.0	8
32	pH-activated size reduction of large compound nanoparticles for inÂvivo nucleus-targeted drug delivery. Biomaterials, 2016, 85, 30-39.	11.4	73
33	A Robust Solutionâ€Based Approach to Monodisperse Hybrid Janus Nanofibers. Chinese Journal of Chemistry, 2015, 33, 527-530.	4.9	1
34	Macrocellular polymer foams from water in oil high internal phase emulsion stabilized solely by polymer Janus nanoparticles: preparation and their application as support for Pd catalyst. RSC Advances, 2015, 5, 40227-40235.	3.6	29
35	A new design of ionic complexation and its application for efficient protection of proteins. Polymer Chemistry, 2015, 6, 1688-1692.	3.9	0
36	Solution-based fabrication of a highly catalytically active 3D network constructed from 1D metal–organic framework-coated polymeric worm-like micelles. Chemical Communications, 2015, 51, 10162-10165.	4.1	18

#	Article	IF	CITATIONS
37	Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology, 2015, 10, 1077-1083.	31.5	310
38	Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy. Nano Letters, 2015, 15, 6501-6505.	9.1	39
39	Water-Soluble Monodisperse Core–Shell Nanorings: Their Tailorable Preparation and Interactions with Oppositely Charged Spheres of a Similar Diameter. Journal of the American Chemical Society, 2014, 136, 15933-15941.	13.7	26
40	Structure and Ultrasonic Sensitivity of the Superparticles Formed by Self-Assembly of Single Chain Janus Nanoparticles. Macromolecules, 2014, 47, 365-372.	4.8	58
41	Scavenger receptor-recognized and enzyme-responsive nanoprobe for fluorescent labeling of lysosomes in live cells. Biomaterials, 2014, 35, 7870-7880.	11.4	18
42	Folic acid-modified iridium(III) coordination polymeric nanoparticles facilitating intracellular release of a phosphorescent residue capable of nuclear entry. Inorganic Chemistry Communication, 2014, 40, 143-147.	3.9	9
43	Studies on Synthesis, Characterization, and Functionalization of Poly(3,4-dihydroxy- <scp>I</scp> -phenylalanine). Chemistry Letters, 2014, 43, 959-961.	1.3	3
44	Bimodal porous superparticles with the optimized structure prepared by self-limited aggregation of PEG-coated mesoporous nanofibers for purification of protein–dye conjugates. Journal of Materials Chemistry A, 2013, 1, 14649.	10.3	8
45	Shear Induced Morphological Transformation of Large Compound Micelles Formed by Glutathione Endâ€capped Poly(4â€vinylpyridine). Chinese Journal of Chemistry, 2013, 31, 745-751.	4.9	2
46	Linear coupling of spherical block copolymer micelles induced by gradually depositing an insoluble component onto the core–shell interface. Soft Matter, 2012, 8, 8636.	2.7	7
47	DNA/Polymeric Micelle Selfâ€Assembly Mimicking Chromatin Compaction. Angewandte Chemie - International Edition, 2012, 51, 8744-8747.	13.8	46
48	A Facile Method to Form a Densely Grafted PEOâ€bâ€P4VP Brush on Gold Surface. Chinese Journal of Chemistry, 2012, 30, 1729-1734.	4.9	4
49	The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials, 2012, 33, 4220-4228.	11.4	43
50	Self-assembly of particlesâ€"The regulatory role of particle flexibility. Progress in Polymer Science, 2012, 37, 445-486.	24.7	84
51	Novel and Efficient One Pot Condensation Reactions between Ketones and Aromatic Alcohols in the Presence of CrO ₃ Producing <i>α</i> , <i>β</i> êUnsaturated Carbonyl Compounds. Chinese Journal of Chemistry, 2011, 29, 2086-2090.	4.9	12
52	Polymeric core-shell stars with a novel fluorescent, cross-linked and swollen core: Their efficient one-step preparation, further self-assembly into superparticles and application as a chemosensor. Journal of Materials Chemistry, 2010, 20, 9988.	6.7	22
53	Transforming spherical block polyelectrolyte micelles into free-suspending films via DNA complexation-induced structural anisotropy. Chemical Communications, 2010, 46, 6135.	4.1	9
54	Noncovalently connected micelles based on a βâ€eyclodextrinâ€eontaining polymer and adamantane endâ€eapped poly(εâ€eaprolactone) via host–guest interactions. Journal of Polymer Science Part A, 2009, 47, 4267-4278.	2.3	52

#	Article	IF	Citations
55	Self-Assembly of Heteroarms Coreâ^'Shell Polymeric Nanoparticles (HCPNs) and Templated Synthesis of Gold Nanoparticles within HCPNs and the Superparticles. Macromolecules, 2009, 42, 7108-7113.	4.8	21
56	Nanoscale Tubular and Sheetlike Superstructures from Hierarchical Selfâ€Assembly of Polymeric Janus Particles. Angewandte Chemie - International Edition, 2008, 47, 10171-10174.	13.8	113
57	Self-dissociation of water-soluble PANa/ETC nano-aggregates. Polymer, 2008, 49, 263-267.	3.8	1
58	Efficient Synthesis of Unimolecular Polymeric Janus Nanoparticles and Their Unique Self-Assembly Behavior in a Common Solvent. Macromolecules, 2008, 41, 8159-8166.	4.8	89
59	Polymer Mortar Assisted Self-Assembly of Nanocrystalline Polydiacetylene Bricks Showing Reversible Thermochromism. Macromolecules, 2008, 41, 2299-2303.	4.8	62
60	Oneâ€Pot Synthesis of Amphiphilic Polymeric Janus Particles and Their Selfâ€Assembly into Supermicelles with a Narrow Size Distribution. Angewandte Chemie - International Edition, 2007, 46, 6321-6324.	13.8	153
61	Grafting of Poly(tBA) and PtBA-b-PMMA onto the Surface of SWNTs Using Carbanions as the Initiator. Macromolecular Rapid Communications, 2006, 27, 882-887.	3.9	31
62	A One-Step Approach to the Highly Efficient Preparation of Core-Stabilized Polymeric Micelles with a Mixed Shell Formed by Two Incompatible Polymers. Macromolecules, 2005, 38, 5834-5837.	4.8	59
63	A One-Pot Approach to the Preparation of Organic Coreâ [*] Shell Nanoobjects with Different Morphologies. Macromolecules, 2005, 38, 3550-3553.	4.8	35
64	Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Accounts of Chemical Research, 2005, 38, 494-502.	15.6	372
65	pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water. European Physical Journal E, 2004, 15, 211-215.	1.6	41
66	Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. Journal of Physical Chemistry B, 2004, 108, 550-555.	2.6	68
67	Short-Life Coreâ^'Shell Structured Nanoaggregates Formed by the Self-Assembly of PEO-b-PAA/ETC (1-(3-Dimethylamino- propyl)-3-ethylcarbodiimide Methiodide) and Their Stabilization. Macromolecules, 2004, 37, 1666-1669.	4.8	26
68	A Novel One-Step Approach to Core-Stabilized Nanoparticles at High Solid Contents. Macromolecules, 2003, 36, 2576-2578.	4.8	87
69	Self-Assembly of Formic Acid/Polystyrene-block-poly(4-vinylpyridine) Complexes into Vesicles in a Low-Polar Organic Solvent Chloroform. Langmuir, 2003, 19, 10989-10992.	3.5	63
70	Macromolecular assembly: from irregular aggregates to regular nanostructures. Macromolecular Symposia, 2003, 195, 165-170.	0.7	7
71	Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. Journal of the American Chemical Society, 2001, 123, 12097-12098.	13.7	143