
## Daoyong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/850153/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Accounts of Chemical Research, 2005, 38, 494-502.                                                 | 15.6 | 372       |
| 2  | Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology, 2015, 10, 1077-1083.                                                                                               | 31.5 | 310       |
| 3  | Oneâ€Pot Synthesis of Amphiphilic Polymeric Janus Particles and Their Selfâ€Assembly into Supermicelles with a Narrow Size Distribution. Angewandte Chemie - International Edition, 2007, 46, 6321-6324.                  | 13.8 | 153       |
| 4  | Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. Journal of the American Chemical Society, 2001, 123, 12097-12098.                                                                       | 13.7 | 143       |
| 5  | Nanoscale Tubular and Sheetlike Superstructures from Hierarchical Selfâ€Assembly of Polymeric Janus<br>Particles. Angewandte Chemie - International Edition, 2008, 47, 10171-10174.                                       | 13.8 | 113       |
| 6  | Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon, 2019, 150, 311-318.                                                                                   | 10.3 | 112       |
| 7  | Efficient Synthesis of Unimolecular Polymeric Janus Nanoparticles and Their Unique Self-Assembly<br>Behavior in a Common Solvent. Macromolecules, 2008, 41, 8159-8166.                                                    | 4.8  | 89        |
| 8  | A Novel One-Step Approach to Core-Stabilized Nanoparticles at High Solid Contents. Macromolecules, 2003, 36, 2576-2578.                                                                                                   | 4.8  | 87        |
| 9  | Self-assembly of particles—The regulatory role of particle flexibility. Progress in Polymer Science,<br>2012, 37, 445-486.                                                                                                | 24.7 | 84        |
| 10 | pH-activated size reduction of large compound nanoparticles for inÂvivo nucleus-targeted drug<br>delivery. Biomaterials, 2016, 85, 30-39.                                                                                 | 11.4 | 73        |
| 11 | Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. Journal of<br>Physical Chemistry B, 2004, 108, 550-555.                                                                             | 2.6  | 68        |
| 12 | Self-Assembly of Formic Acid/Polystyrene-block-poly(4-vinylpyridine) Complexes into Vesicles in a<br>Low-Polar Organic Solvent Chloroform. Langmuir, 2003, 19, 10989-10992.                                               | 3.5  | 63        |
| 13 | Polymer Mortar Assisted Self-Assembly of Nanocrystalline Polydiacetylene Bricks Showing Reversible<br>Thermochromism. Macromolecules, 2008, 41, 2299-2303.                                                                | 4.8  | 62        |
| 14 | A One-Step Approach to the Highly Efficient Preparation of Core-Stabilized Polymeric Micelles with a<br>Mixed Shell Formed by Two Incompatible Polymers. Macromolecules, 2005, 38, 5834-5837.                             | 4.8  | 59        |
| 15 | Structure and Ultrasonic Sensitivity of the Superparticles Formed by Self-Assembly of Single Chain<br>Janus Nanoparticles. Macromolecules, 2014, 47, 365-372.                                                             | 4.8  | 58        |
| 16 | Noncovalently connected micelles based on a β yclodextrinâ€containing polymer and adamantane<br>endâ€capped poly(εâ€caprolactone) via host–guest interactions. Journal of Polymer Science Part A, 2009,<br>47, 4267-4278. | 2.3  | 52        |
| 17 | Multistage Polymerization Design for g-C <sub>3</sub> N <sub>4</sub> Nanosheets with Enhanced<br>Photocatalytic Activity by Modifying the Polymerization Process of Melamine. ACS Omega, 2019, 4,<br>17148-17159.         | 3.5  | 50        |
| 18 | DNA/Polymeric Micelle Selfâ€Assembly Mimicking Chromatin Compaction. Angewandte Chemie -<br>International Edition, 2012, 51, 8744-8747.                                                                                   | 13.8 | 46        |

DAOYONG CHEN

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. Biomaterials, 2012, 33, 4220-4228.                                                                | 11.4 | 43        |
| 20 | Solutionâ€Based Fabrication of Narrowâ€Disperse ABC Threeâ€Segment and Î~â€Shaped Nanoparticles.<br>Angewandte Chemie - International Edition, 2016, 55, 6182-6186.                                                                                         | 13.8 | 43        |
| 21 | <i>In situ</i> synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors. Nanoscale, 2020, 12, 17738-17745.                                                                                    | 5.6  | 43        |
| 22 | pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water.<br>European Physical Journal E, 2004, 15, 211-215.                                                                                                         | 1.6  | 41        |
| 23 | Multiheteroatom-Doped Porous Carbon Catalyst for Oxygen Reduction Reaction Prepared using 3D<br>Network of ZIF-8/Polymeric Nanofiber as a Facile-Doping Template. ACS Applied Materials &<br>Interfaces, 2017, 9, 21083-21088.                              | 8.0  | 41        |
| 24 | Antifouling Wood Matrix with Natural Water Transfer and Microreaction Channels for Water Treatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 6782-6791.                                                                                          | 6.7  | 40        |
| 25 | Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy. Nano Letters, 2015, 15, 6501-6505.                                                                                                           | 9.1  | 39        |
| 26 | A One-Pot Approach to the Preparation of Organic Coreâ^'Shell Nanoobjects with Different<br>Morphologies. Macromolecules, 2005, 38, 3550-3553.                                                                                                              | 4.8  | 35        |
| 27 | ZIF-67-derived Co@N-PC anchored on tracheid skeleton from sawdust with micro/nano composite structures for boosted methylene blue degradation. Separation and Purification Technology, 2021, 278, 119489.                                                   | 7.9  | 35        |
| 28 | Grafting of Poly(tBA) and PtBA-b-PMMA onto the Surface of SWNTs Using Carbanions as the Initiator.<br>Macromolecular Rapid Communications, 2006, 27, 882-887.                                                                                               | 3.9  | 31        |
| 29 | Macrocellular polymer foams from water in oil high internal phase emulsion stabilized solely by polymer Janus nanoparticles: preparation and their application as support for Pd catalyst. RSC Advances, 2015, 5, 40227-40235.                              | 3.6  | 29        |
| 30 | Efficient synthesis of narrowly dispersed amphiphilic double-brush copolymers through the polymerization reaction of macromonomer micelle emulsifiers at the oil–water interface. Polymer Chemistry, 2016, 7, 4476-4485.                                    | 3.9  | 28        |
| 31 | Short-Life Coreâ^'Shell Structured Nanoaggregates Formed by the Self-Assembly of PEO-b-PAA/ETC<br>(1-(3-Dimethylamino- propyl)-3-ethylcarbodiimide Methiodide) and Their Stabilization. Macromolecules,<br>2004, 37, 1666-1669.                             | 4.8  | 26        |
| 32 | Water-Soluble Monodisperse Core–Shell Nanorings: Their Tailorable Preparation and Interactions<br>with Oppositely Charged Spheres of a Similar Diameter. Journal of the American Chemical Society,<br>2014, 136, 15933-15941.                               | 13.7 | 26        |
| 33 | Yolk–Shell Structured Nickel Cobalt Sulfide and Carbon Nanotube Composite for High-Performance<br>Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 5342-5351.                                                                                              | 5.1  | 25        |
| 34 | Polymeric core-shell stars with a novel fluorescent, cross-linked and swollen core: Their efficient<br>one-step preparation, further self-assembly into superparticles and application as a chemosensor.<br>Journal of Materials Chemistry, 2010, 20, 9988. | 6.7  | 22        |
| 35 | Self-Assembly of Heteroarms Coreâ^'Shell Polymeric Nanoparticles (HCPNs) and Templated Synthesis of Gold Nanoparticles within HCPNs and the Superparticles. Macromolecules, 2009, 42, 7108-7113.                                                            | 4.8  | 21        |
| 36 | Solution-Based Thermodynamically Controlled Conversion from Diblock Copolymers to Janus<br>Nanoparticles. ACS Macro Letters, 2017, 6, 580-585.                                                                                                              | 4.8  | 20        |

DAOYONG CHEN

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Efficient Fabrication of Pure, Single-Chain Janus Particles through Their Exclusive Self-Assembly in<br>Mixtures with Their Analogues. ACS Macro Letters, 2018, 7, 1278-1282.                                                                         | 4.8  | 20        |
| 38 | Scavenger receptor-recognized and enzyme-responsive nanoprobe for fluorescent labeling of lysosomes in live cells. Biomaterials, 2014, 35, 7870-7880.                                                                                                 | 11.4 | 18        |
| 39 | Solution-based fabrication of a highly catalytically active 3D network constructed from 1D<br>metal–organic framework-coated polymeric worm-like micelles. Chemical Communications, 2015, 51,<br>10162-10165.                                         | 4.1  | 18        |
| 40 | Recent Progress in Flexible Fibrous Batteries. ChemElectroChem, 2018, 5, 3127-3137.                                                                                                                                                                   | 3.4  | 16        |
| 41 | A novel worm-like micelles@MOFs precursor for constructing hierarchically porous CoP/N-doped carbon networks towards efficient hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 600, 872-881.                             | 9.4  | 15        |
| 42 | From Tunable DNA/Polymer Self-Assembly to Tailorable and Morphologically Pure Core–Shell<br>Nanofibers. Langmuir, 2018, 34, 15350-15359.                                                                                                              | 3.5  | 14        |
| 43 | Novel and Efficient One Pot Condensation Reactions between Ketones and Aromatic Alcohols in the<br>Presence of CrO <sub>3</sub> Producing <i>α</i> , <i>β</i> â€Unsaturated Carbonyl Compounds. Chinese<br>Journal of Chemistry, 2011, 29, 2086-2090. | 4.9  | 12        |
| 44 | Reversible thermochromism via hydrogen-bonded cocrystals of polydiacetylene and melamine.<br>Polymer, 2016, 105, 440-448.                                                                                                                             | 3.8  | 12        |
| 45 | Transforming spherical block polyelectrolyte micelles into free-suspending films via DNA complexation-induced structural anisotropy. Chemical Communications, 2010, 46, 6135.                                                                         | 4.1  | 9         |
| 46 | Folic acid-modified iridium(III) coordination polymeric nanoparticles facilitating intracellular release<br>of a phosphorescent residue capable of nuclear entry. Inorganic Chemistry Communication, 2014, 40,<br>143-147.                            | 3.9  | 9         |
| 47 | A network of porous carbon/ZnCo <sub>2</sub> O <sub>4</sub> nanotubes derived from<br>shell-hybridized worm-like micelles for lithium storage. Journal of Materials Chemistry A, 2019, 7,<br>22642-22649.                                             | 10.3 | 9         |
| 48 | Bimodal porous superparticles with the optimized structure prepared by self-limited aggregation of<br>PEG-coated mesoporous nanofibers for purification of protein–dye conjugates. Journal of Materials<br>Chemistry A, 2013, 1, 14649.               | 10.3 | 8         |
| 49 | Solutionâ€Based Fabrication of Narrowâ€Disperse ABC Threeâ€Segment and Î^â€Shaped Nanoparticles.<br>Angewandte Chemie, 2016, 128, 6290-6294.                                                                                                          | 2.0  | 8         |
| 50 | Boosting Organic Afterglow Performance via a Two-Component Design Strategy Extracted from<br>Macromolecular Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 5030-5039.                                                                | 4.6  | 8         |
| 51 | Macromolecular assembly: from irregular aggregates to regular nanostructures. Macromolecular<br>Symposia, 2003, 195, 165-170.                                                                                                                         | 0.7  | 7         |
| 52 | Linear coupling of spherical block copolymer micelles induced by gradually depositing an insoluble component onto the core–shell interface. Soft Matter, 2012, 8, 8636.                                                                               | 2.7  | 7         |
| 53 | A one-pot approach using recyclable template to prepare dual-responsive yolk–shell or Janus-like<br>nanoparticles. Polymer Chemistry, 2016, 7, 7170-7176.                                                                                             | 3.9  | 7         |
| 54 | Self-assembly of polymeric micelles into complex but regular superstructures based on highly controllable core–core fusion between the micelles. Soft Matter, 2016, 12, 4891-4895.                                                                    | 2.7  | 6         |

DAOYONG CHEN

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A general method to greatly enhance ultrasound-responsiveness for common polymeric assemblies.<br>Polymer Chemistry, 2020, 11, 3296-3304.                                                      | 3.9 | 6         |
| 56 | Polydiacetylene and its composites with long effective conjugation lengths and tunable third-order nonlinear optical absorption. Polymer Chemistry, 2021, 12, 3257-3263.                       | 3.9 | 6         |
| 57 | Heavily superparamagnetic magnetite-loaded polymeric worm-like micelles that have an ultrahigh<br><i>T</i> <sub>2</sub> relaxivity. Polymer Chemistry, 2020, 11, 6134-6138.                    | 3.9 | 5         |
| 58 | A Facile Method to Form a Densely Grafted PEOâ€bâ€P4VP Brush on Gold Surface. Chinese Journal of Chemistry, 2012, 30, 1729-1734.                                                               | 4.9 | 4         |
| 59 | Polydiacetyleneâ€Tb <sup>3+</sup> Nanosheets of Which Both the Color and the Fluorescence Can Be<br>Reversibly Switched between Two Colors. Chinese Journal of Chemistry, 2017, 35, 1678-1686. | 4.9 | 4         |
| 60 | Endowing Polymeric Assemblies with Unique Properties and Behaviors by Incorporating Versatile Nanogels in the Shell. ACS Macro Letters, 2019, 8, 1222-1226.                                    | 4.8 | 4         |
| 61 | Studies on Synthesis, Characterization, and Functionalization of<br>Poly(3,4-dihydroxy- <scp>l</scp> -phenylalanine). Chemistry Letters, 2014, 43, 959-961.                                    | 1.3 | 3         |
| 62 | Shear Induced Morphological Transformation of Large Compound Micelles Formed by Glutathione<br>Endâ€capped Poly(4â€vinylpyridine). Chinese Journal of Chemistry, 2013, 31, 745-751.            | 4.9 | 2         |
| 63 | Precise surface structure of nanofibres with nearly atomic-level precision. Chemical Communications, 2018, 54, 11084-11087.                                                                    | 4.1 | 2         |
| 64 | Fabrication of the Polymersomes with Unique and Even Nonequilibrium Morphologies.<br>Macromolecular Rapid Communications, 2021, 42, 2000504.                                                   | 3.9 | 2         |
| 65 | Self-dissociation of water-soluble PANa/ETC nano-aggregates. Polymer, 2008, 49, 263-267.                                                                                                       | 3.8 | 1         |
| 66 | A Robust Solutionâ€Based Approach to Monodisperse Hybrid Janus Nanofibers. Chinese Journal of Chemistry, 2015, 33, 527-530.                                                                    | 4.9 | 1         |
| 67 | Recovering 3D images of polymeric nanofibers in solution through theoretical analysis and Monte-Carlo simulations of their 2D TEM images. Soft Matter, 2016, 12, 4590-4594.                    | 2.7 | 1         |
| 68 | Fabrication of melamine/Tb3+-intercalated polydiacetylene nanosheets and their thermochromic reversibility. Chinese Journal of Chemical Physics, 2020, 33, 357-364.                            | 1.3 | 1         |
| 69 | Noncovalent Postmodification Guided Reversible Compartmentalization of Polymeric Micelles. ACS<br>Macro Letters, 2022, 11, 687-692.                                                            | 4.8 | 1         |
| 70 | A new design of ionic complexation and its application for efficient protection of proteins. Polymer Chemistry, 2015, 6, 1688-1692.                                                            | 3.9 | 0         |
| 71 | Strictly sparse surface modification and its application for endowing nanoparticles with an exact<br>"valency― Chemical Communications, 2020, 56, 15553-15556.                                 | 4.1 | 0         |