
Jonathan S Gootenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8501185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 2015, 163, 759-771.	28.9	3,558
2	Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 2013, 154, 1380-1389.	28.9	2,862
3	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	12.6	2,275
4	Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517, 583-588.	27.8	2,272
5	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	27.8	2,237
6	Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 360, 439-444.	12.6	1,649
7	C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353, aaf5573.	12.6	1,647
8	RNA targeting with CRISPR–Cas13. Nature, 2017, 550, 280-284.	27.8	1,442
9	RNA editing with CRISPR-Cas13. Science, 2017, 358, 1019-1027.	12.6	1,301
10	Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360, 444-448.	12.6	982
11	Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 2015, 60, 385-397.	9.7	971
12	Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 2017, 12, 828-863.	12.0	858
13	SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols, 2019, 14, 2986-3012.	12.0	851
14	Diversity and evolution of class 2 CRISPR–Cas systems. Nature Reviews Microbiology, 2017, 15, 169-182.	28.6	792
15	Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361, 1259-1262.	12.6	783
16	Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nature Biotechnology, 2017, 35, 31-34.	17.5	736
17	Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 2020, 383, 1492-1494.	27.0	506
18	CRISPR-based diagnostics. Nature Biomedical Engineering, 2021, 5, 643-656.	22.5	492

JONATHAN S GOOTENBERG

#	Article	IF	CITATIONS
19	Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell, 2017, 65, 618-630.e7.	9.7	445
20	Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nature Biomedical Engineering, 2020, 4, 1140-1149.	22.5	442
21	Genome-scale activation screen identifies a IncRNA locus regulating a gene neighbourhood. Nature, 2017, 548, 343-346.	27.8	336
22	A cytosine deaminase for programmable single-base RNA editing. Science, 2019, 365, 382-386.	12.6	322
23	Structure and Engineering of Francisella novicida Cas9. Cell, 2016, 164, 950-961.	28.9	296
24	Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11.	9.7	286
25	Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nature Biotechnology, 2015, 33, 1159-1161.	17.5	231
26	A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell, 2021, 184, 3376-3393.e17.	28.9	164
27	Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, 597, 720-725.	27.8	155
28	Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Molecular Cell, 2017, 65, 1109-1121.e3.	9.7	145
29	High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Reports, 2019, 26, 3741-3751.e5.	6.4	102
30	Nucleic Acid Detection of Plant Genes Using CRISPR-Cas13. CRISPR Journal, 2019, 2, 165-171.	2.9	92
31	Rapid SARS-CoV-2 testing in primary material based on a novel multiplex RT-LAMP assay. PLoS ONE, 2020, 15, e0238612.	2.5	58
32	CRISPR diagnostics. Science, 2021, 372, 914-915.	12.6	52
33	Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell, 2022, 185, 2324-2337.e16.	28.9	51
34	Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell, 2013, 155, 479-480.	28.9	45
35	A Survey of Genome Editing Activity for 16 Cas12a Orthologs. Keio Journal of Medicine, 2020, 69, 59-65.	1.1	41
36	Rapid and accurate species identification for ecological studies and monitoring using CRISPRâ€based SHERLOCK. Molecular Ecology Resources, 2020, 20, 961-970.	4.8	35

#	Article	IF	CITATIONS
37	Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nature Communications, 2019, 10, 1968.	12.8	33
38	Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. Nature Communications, 2018, 9, 2962.	12.8	32
39	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	5.5	22
40	Barcode extension for analysis and reconstruction of structures. Nature Communications, 2017, 8, 14698.	12.8	17
41	Engineered bromodomains to explore the acetylproteome. Proteomics, 2015, 15, 1470-1475.	2.2	10
42	Chipping in on Diagnostics. CRISPR Journal, 2019, 2, 69-71.	2.9	4
43	S15.2â€Crispr diagnostics: expanding the nucleic acid detection toolbox by harnessing microbial diversity. , 2019, , .		0
44	Abstract 1978: The poly-SUMO protein specific E3 ubiquitin ligase RNF4 is induced in multiple myeloma and reduces bortezomib-induced cell killing. , 2010, , .		0