William S Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8500742/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159072.	2.4	42
2	Apolipoprotein E content of VLDL limits LPL-mediated triglyceride hydrolysis. Journal of Lipid Research, 2022, 63, 100157.	4.2	9
3	Conformational flexibility of apolipoprotein A-I amino- and carboxy-termini is necessary for lipid binding but not cholesterol efflux. Journal of Lipid Research, 2022, 63, 100168.	4.2	7
4	Pulmonary surfactant protein B carried by HDL predicts incident CVD in patients with type 1 diabetes. Journal of Lipid Research, 2022, 63, 100196.	4.2	7
5	Apolipoprotein A-I modulates HDL particle size in the absence of apolipoprotein A-II. Journal of Lipid Research, 2021, 62, 100099.	4.2	10
6	Pregnancy is accompanied by larger high density lipoprotein particles and compositionally distinct subspecies. Journal of Lipid Research, 2021, 62, 100107.	4.2	13
7	The Difference Between High Density Lipoprotein Subfractions and Subspecies: an Evolving Model in Cardiovascular Disease and Diabetes. Current Atherosclerosis Reports, 2021, 23, 23.	4.8	21
8	Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Scientific Reports, 2021, 11, 13289.	3.3	16
9	Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2330-2341.	2.4	14
10	Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science, 2021, 373, .	12.6	87
11	High-Density Lipoprotein Subspecies in Health and Human Disease: Focus on Type 2 Diabetes. Methodist DeBakey Cardiovascular Journal, 2021, 15, 55.	1.0	20
12	Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH. Journal of Lipid Research, 2020, 61, 244-251.	4.2	4
13	Highly conserved amino acid residues in apolipoprotein A1 discordantly induce high density lipoprotein assembly in vitro and in vivo. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158794.	2.4	3
14	Characterization of LP-Z Lipoprotein Particles and Quantification in Subjects with Liver Disease Using a Newly Developed NMR-Based Assay. Journal of Clinical Medicine, 2020, 9, 2915.	2.4	18
15	Protein-Defined Subspecies of HDLs (High-Density Lipoproteins) and Differential Risk of Coronary Heart Disease in 4 Prospective Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2714-2727.	2.4	38
16	Diabetes Impairs Cellular Cholesterol Efflux From ABCA1 to Small HDL Particles. Circulation Research, 2020, 127, 1198-1210.	4.5	41
17	Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation. Endocrinology, 2020, 161, .	2.8	7
18	Albuminuria, the High-Density Lipoprotein Proteome, and Coronary Artery Calcification in Type 1 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1483-1491.	2.4	20

#	Article	IF	CITATIONS
19	Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia. Journal of Biological Chemistry, 2019, 294, 19022-19033.	3.4	16
20	The structure of apoAâ€II on HDL reveals novel insights into its regulation of lipoprotein composition and function. FASEB Journal, 2019, 33, .	0.5	0
21	Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nature Communications, 2018, 9, 700.	12.8	124
22	Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nature Protocols, 2018, 13, 431-458.	12.0	47
23	Distinct Proteomic Signatures in 16 HDL (High-Density Lipoprotein) Subspecies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2827-2842.	2.4	75
24	Apolipoprotein A-IV binds \hat{I} ±Ilb \hat{I} ² 3 integrin and inhibits thrombosis. Nature Communications, 2018, 9, 3608.	12.8	75
25	A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL[S]. Journal of Lipid Research, 2018, 59, 1244-1255.	4.2	59
26	High-Density Lipoproteins-Associated Proteins and Subspecies Related to Arterial Stiffness in Young Adults with Type 2 Diabetes Mellitus. Complexity, 2018, 2018, 1-14.	1.6	0
27	Apolipoprotein A-IV enhances cholecystokinnin secretion. Physiology and Behavior, 2018, 188, 11-17.	2.1	2
28	Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth. FASEB Journal, 2018, 32, 717-727.	0.5	4
29	Mapping Atheroprotective Functions and Related Proteins/Lipoproteins in Size Fractionated Human Plasma. Molecular and Cellular Proteomics, 2017, 16, 680-693.	3.8	28
30	Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. Journal of Lipid Research, 2017, 58, 1374-1385.	4.2	50
31	High density lipoproteins selectively promote the survival of human regulatory T cells. Journal of Lipid Research, 2017, 58, 1514-1523.	4.2	40
32	Obesity is associated with an altered HDL subspecies profile among adolescents with metabolic disease. Journal of Lipid Research, 2017, 58, 1916-1923.	4.2	20
33	A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nature Structural and Molecular Biology, 2017, 24, 1093-1099.	8.2	54
34	Effects of Multiple Freeze/Thaw Cycles on Measurements of Potential Novel Biomarkers Associated With Adverse Pregnancy Outcomes. Journal of Clinical and Laboratory Medicine, 2017, 2, .	0.1	6
35	The effects of apolipoprotein B depletion on HDL subspecies composition and function. Journal of Lipid Research, 2016, 57, 674-686.	4.2	52
36	Impact of genetic deletion of platform apolipoproteins on the size distribution of the murine lipoproteome. Journal of Proteomics, 2016, 146, 184-194.	2.4	8

#	Article	IF	CITATIONS
37	An Evaluation of the Crystal Structure of C-terminal Truncated Apolipoprotein A-I in Solution Reveals Structural Dynamics Related to Lipid Binding. Journal of Biological Chemistry, 2016, 291, 5439-5451.	3.4	16
38	Superiority of lipoprotein particle number to detect associations with arterial thickness and stiffness in obese youth with and without prediabetes. Journal of Clinical Lipidology, 2016, 10, 610-618.	1.5	15
39	Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line. PLoS ONE, 2015, 10, e0142098.	2.5	19
40	A Comparison of Methods To Enhance Protein Detection of Lipoproteins by Mass Spectrometry. Journal of Proteome Research, 2015, 14, 2943-2950.	3.7	9
41	Network-Based Analysis on Orthogonal Separation of Human Plasma Uncovers Distinct High Density Lipoprotein Complexes. Journal of Proteome Research, 2015, 14, 3082-3094.	3.7	19
42	Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function. Journal of Biological Chemistry, 2015, 290, 10689-10702.	3.4	11
43	A Comparison of the Mouse and Human Lipoproteome: Suitability of the Mouse Model for Studies of Human Lipoproteins. Journal of Proteome Research, 2015, 14, 2686-2695.	3.7	83
44	Structure of HDL: Particle Subclasses and Molecular Components. Handbook of Experimental Pharmacology, 2015, 224, 3-51.	1.8	184
45	Red Blood Cell Dysfunction Induced by High-Fat Diet. Circulation, 2015, 132, 1898-1908.	1.6	71
46	The Structure of Human Apolipoprotein A-IV as Revealed by Stable Isotope-assisted Cross-linking, Molecular Dynamics, and Small Angle X-ray Scattering. Journal of Biological Chemistry, 2014, 289, 5596-5608.	3.4	26
47	HDL-C vs HDL-P: How Changing One Letter Could Make a Difference in Understanding the Role of High-Density Lipoprotein in Disease. Clinical Chemistry, 2014, 60, e1-e3.	3.2	24
48	Apolipoprotein A-IV Reduces Hepatic Gluconeogenesis through Nuclear Receptor NR1D1. Journal of Biological Chemistry, 2014, 289, 2396-2404.	3.4	48
49	High-density lipoproteins: A consensus statement from the National Lipid Association. Journal of Clinical Lipidology, 2013, 7, 484-525.	1.5	276
50	Specific sequences in N termini of apolipoprotein A-IV modulate its anorectic effect. Physiology and Behavior, 2013, 120, 136-142.	2.1	10
51	Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. Journal of Lipid Research, 2013, 54, 2575-2585.	4.2	302
52	Small-angle X-ray Scattering of Apolipoprotein A-IV Reveals the Importance of Its Termini for Structural Stability. Journal of Biological Chemistry, 2013, 288, 4854-4866.	3.4	10
53	The Effects of Type 2 Diabetes on Lipoprotein Composition and Arterial Stiffness in Male Youth. Diabetes, 2013, 62, 2958-2967.	0.6	64
54	Multi-dimensional Co-separation Analysis Reveals Protein–Protein Interactions Defining Plasma Lipoprotein Subspecies. Molecular and Cellular Proteomics, 2013, 12, 3123-3134.	3.8	62

#	Article	IF	CITATIONS
55	Abstract 114: Correlation of Specific HDL Subspecies with Arterial Stiffness in Youth with Type 2 Diabetes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
56	High yield expression and purification of recombinant human apolipoprotein A-II in Escherichia coli. Journal of Lipid Research, 2012, 53, 1708-1715.	4.2	12
57	Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9641-9646.	7.1	99
58	Cholesterol Efflux and Atheroprotection. Circulation, 2012, 125, 1905-1919.	1.6	772
59	The Structure of Dimeric Apolipoprotein A-IV and Its Mechanism of Self-Association. Structure, 2012, 20, 767-779.	3.3	39
60	Abstract 411: An Anion-Exchange Chromatography Isolated Subfraction of Mouse Apolipoprotein A-I Is Unable to Activate Cellular Cholesterol Release from Mouse Peritoneal Macrophage Foam Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
61	Red Blood Cells As a Novel Mediator of Chronic Inflammation in Diet-Induced Obesity: Implications for Atherosclerosis. Blood, 2012, 120, 3198-3198.	1.4	0
62	High density lipoprotein: it's not just about lipid transport anymore. Trends in Endocrinology and Metabolism, 2011, 22, 9-15.	7.1	142
63	Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nature Structural and Molecular Biology, 2011, 18, 416-422.	8.2	207
64	Structure of dimeric apoAâ€ŧV: basis for HDL model. FASEB Journal, 2011, 25, 938.1.	0.5	0
65	High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality. Current Cardiovascular Risk Reports, 2010, 4, 1-8.	2.0	32
66	The role of hydrophobic and negatively charged surface patches of lipid-free apolipoprotein A-I in lipid binding and ABCA1-mediated cholesterol efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 64-69.	2.4	13
67	Proteomic Characterization of Human Plasma High Density Lipoprotein Fractionated by Gel Filtration Chromatography. Journal of Proteome Research, 2010, 9, 5239-5249.	3.7	213
68	Proteomic Analysis of Defined HDL Subpopulations Reveals Particle-Specific Protein Clusters. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 870-876.	2.4	375
69	Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease. Journal of Lipid Research, 2009, 50, 1497-1504.	4.2	29
70	Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12176-12181.	7.1	182
71	A Three-dimensional Homology Model of Lipid-free Apolipoprotein A-IV Using Cross-linking and Mass Spectrometry. Journal of Biological Chemistry, 2008, 283, 17314-17323.	3.4	33
72	An Amphipathic Helical Region of the N-terminal Barrel of Phospholipid Transfer Protein Is Critical for ABCA1-dependent Cholesterol Efflux. Journal of Biological Chemistry, 2008, 283, 11541-11549.	3.4	50

#	Article	IF	CITATIONS
73	Modulation of Apolipoprotein A-IV Lipid Binding by an Interaction between the N and C Termini. Journal of Biological Chemistry, 2007, 282, 28385-28394.	3.4	23
74	The Structure of Apolipoprotein A-II in Discoidal High Density Lipoproteins. Journal of Biological Chemistry, 2007, 282, 9713-9721.	3.4	33
75	ABCA1-Induced Cell Surface Binding Sites for ApoA-I. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1603-1609.	2.4	122
76	The Structure of Apolipoprotein A-I in High Density Lipoproteins. Journal of Biological Chemistry, 2007, 282, 22249-22253.	3.4	176
77	The biotin-capture lipid affinity assay: a rapid method for determining lipid binding parameters for apolipoproteins. Journal of Lipid Research, 2006, 47, 440-449.	4.2	14
78	Ceramide structural features required to stimulate ABCA1-mediated cholesterol efflux to apolipoprotein A-I. Journal of Lipid Research, 2006, 47, 2781-2788.	4.2	19
79	Apolipoprotein structural organization in high density lipoproteins: belts, bundles, hinges and hairpins. Current Opinion in Lipidology, 2005, 16, 295-300.	2.7	70
80	A Mass Spectrometric Determination of the Conformation of Dimeric Apolipoprotein A-I in Discoidal High Density Lipoproteinsâ€. Biochemistry, 2005, 44, 8600-8607.	2.5	103
81	Specific Sequences in the N and C Termini of Apolipoprotein A-IV Modulate Its Conformation and Lipid Association. Journal of Biological Chemistry, 2005, 280, 38576-38582.	3.4	20
82	A Three-Dimensional Molecular Model of Lipid-Free Apolipoprotein A-I Determined by Cross-Linking/Mass Spectrometry and Sequence Threadingâ€. Biochemistry, 2005, 44, 2759-2769.	2.5	98
83	Helix Orientation of the Functional Domains in Apolipoprotein E in Discoidal High Density Lipoprotein Particles. Journal of Biological Chemistry, 2004, 279, 14273-14279.	3.4	79
84	Identification and Structural Ramifications of a Hinge Domain in Apolipoprotein A-I Discoidal High-density Lipoproteins of Different Sizeâ€. Biochemistry, 2004, 43, 11717-11726.	2.5	62
85	Structure of Human Apolipoprotein A-IV:  A Distinct Domain Architecture among Exchangeable Apolipoproteins with Potential Functional Implications. Biochemistry, 2004, 43, 10719-10729.	2.5	33
86	Apolipoprotein A-IV inhibits experimental colitis. Journal of Clinical Investigation, 2004, 114, 260-269.	8.2	129
87	Apolipoprotein A-IV inhibits experimental colitis. Journal of Clinical Investigation, 2004, 114, 260-269.	8.2	84
88	The Spatial Organization of Apolipoprotein A-I on the Edge of Discoidal High Density Lipoprotein Particles. Journal of Biological Chemistry, 2003, 278, 27199-27207.	3.4	94
89	Ceramide Enhances Cholesterol Efflux to Apolipoprotein A-I by Increasing the Cell Surface Presence of ATP-binding Cassette Transporter A1. Journal of Biological Chemistry, 2003, 278, 40121-40127.	3.4	75
90	The Role of Apolipoprotein A-I Helix 10 in Apolipoprotein-mediated Cholesterol Efflux via the ATP-binding Cassette Transporter ABCA1. Journal of Biological Chemistry, 2002, 277, 39477-39484.	3.4	110

#	Article	IF	CITATIONS
91	Bacterial expression and characterization of mature apolipoprotein A-I. Protein Expression and Purification, 2002, 25, 353-361.	1.3	23
92	Apolipoprotein A-I Adopts a Belt-like Orientation in Reconstituted High Density Lipoproteins. Journal of Biological Chemistry, 2001, 276, 42965-42970.	3.4	74
93	A proteolytic method for distinguishing between lipid-free and lipid-bound apolipoprotein A-I. Journal of Lipid Research, 2001, 42, 864-872.	4.2	25
94	Structural Organization of the N-Terminal Domain of Apolipoprotein A-I:Â Studies of Tryptophan Mutantsâ€. Biochemistry, 1999, 38, 14387-14395.	2.5	73
95	Stabilization of α-Synuclein Secondary Structure upon Binding to Synthetic Membranes. Journal of Biological Chemistry, 1998, 273, 9443-9449.	3.4	1,376
96	Effects of Acceptor Particle Size on the Efflux of Cellular Free Cholesterol. Journal of Biological Chemistry, 1995, 270, 17106-17113.	3.4	116
97	The Effect of High Density Lipoprotein Phospholipid Acyl Chain Composition on the Efflux of Cellular Free Cholesterol. Journal of Biological Chemistry, 1995, 270, 5882-5890.	3.4	139