
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499548/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bound exciton and donor–acceptor pair recombinations in ZnO. Physica Status Solidi (B): Basic Research, 2004, 241, 231-260.	1.5	1,499
2	Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2003, 83, 3290-3292.	3.3	174
3	The thickness of native oxides on aluminum alloys and single crystals. Applied Surface Science, 2015, 349, 826-832.	6.1	174
4	Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN: Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy. Applied Physics Letters, 1999, 74, 359-361.	3.3	137
5	MOVPE growth of GaN on Si(111) substrates. Journal of Crystal Growth, 2003, 248, 556-562.	1.5	125
6	Gallium gradients in Cu(In,Ga)Se ₂ thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 717-733.	8.1	122
7	Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1583-1606.	0.8	116
8	Optical investigations of AlGaN on GaN epitaxial films. Applied Physics Letters, 1999, 74, 2456-2458.	3.3	106
9	Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays. Small, 2007, 3, 76-80.	10.0	95
10	Fabrication, Self-Assembly, and Properties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, and Curved Sheets. ACS Nano, 2009, 3, 1663-1668.	14.6	91
11	Vertical strain and doping gradients in thick GaN layers. Applied Physics Letters, 1997, 71, 2490-2492.	3.3	78
12	On the nature of the 3.41eV luminescence in hexagonal GaN. Journal of Crystal Growth, 1998, 189-190, 556-560.	1.5	78
13	Group III nitride core–shell nano―and microrods for optoelectronic applications. Physica Status Solidi - Rapid Research Letters, 2013, 7, 800-814.	2.4	76
14	Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films. Microscopy and Microanalysis, 2011, 17, 728-751.	0.4	72
15	MOVPE growth of high-quality AlN. Journal of Crystal Growth, 2006, 297, 306-310.	1.5	68
16	Threeâ€dimensional GaN for semipolar light emitters. Physica Status Solidi (B): Basic Research, 2011, 248, 549-560.	1.5	62
17	Self organization phenomena of quantum dots grown by metalorganic chemical vapour deposition. Journal of Crystal Growth, 1997, 170, 568-573.	1.5	59
18	Low Stokes shift in thick and homogeneous InGaN epilayers. Applied Physics Letters, 2002, 80, 550-552.	3.3	58

#	Article	IF	CITATIONS
19	Direct imaging of phase separation in ZnCdO layers. Applied Physics Letters, 2006, 88, 061915.	3.3	55
20	An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes. Journal of Applied Physics, 2012, 112, 023107.	2.5	53
21	Optical microscopy of electronic and structural properties of epitaxial laterally overgrown GaN. Applied Physics Letters, 1999, 74, 3320-3322.	3.3	52
22	Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence. Nanotechnology, 2004, 15, 1401-1404.	2.6	52
23	A two-step metal organic vapor phase epitaxy growth method for high-quality ZnO on GaN/Al2O3 (0001). Journal of Crystal Growth, 2004, 267, 140-144.	1.5	52
24	Stress analysis of selective epitaxial growth of GaN. Applied Physics Letters, 1999, 74, 3122-3124.	3.3	48
25	Phosphorâ€converted white light from blueâ€emitting InGaN microrod LEDs. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1577-1584.	1.8	48
26	Metalorganic chemical vapor phase deposition of ZnO with different O-precursors. Journal of Crystal Growth, 2003, 248, 14-19.	1.5	46
27	Emission of Linearly Polarized Single Photons from Quantum Dots Contained in Nonpolar, Semipolar, and Polar Sections of Pencil-Like InGaN/GaN Nanowires. ACS Photonics, 2017, 4, 657-664.	6.6	44
28	Local luminescence of ZnO nanowire-covered surface: A cathodoluminescence microscopy study. Applied Physics Letters, 2005, 86, 023113.	3.3	43
29	Nanoscopic Insights into InGaN/GaN Core–Shell Nanorods: Structure, Composition, and Luminescence. Nano Letters, 2016, 16, 5340-5346.	9.1	43
30	Dry etching of GaN substrates for high-quality homoepitaxy. Applied Physics Letters, 1999, 74, 1123-1125.	3.3	42
31	A comparison of the Hall-effect and secondary ion mass spectroscopy on the shallow oxygen donor in unintentionally doped GaN films. Journal of Applied Physics, 2000, 88, 1811-1817.	2.5	41
32	Ostwald ripening and flattening of epitaxial ZnO layers during in situ annealing in metalorganic vapor phase epitaxy. Applied Physics Letters, 2004, 85, 1496-1498.	3.3	39
33	MBE growth of ZnO layers on sapphire employing hydrogen peroxide as an oxidant. Journal of Crystal Growth, 2006, 287, 7-11.	1.5	39
34	Localization versus field effects in single InGaN quantum wells. Applied Physics Letters, 2004, 84, 58-60.	3.3	36
35	The origin of optical gain in cubic InGaN grown by molecular beam epitaxy. Applied Physics Letters, 2000, 76, 2832-2834.	3.3	35
36	Catalyst-free vapor-phase transport growth of vertically aligned ZnO nanorods on 6H-SiC and (11-20)Al2O3. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1046-1050.	0.8	35

#	Article	IF	CITATIONS
37	A -plane GaN epitaxial lateral overgrowth structures: Growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy. Applied Physics Letters, 2008, 92, .	3.3	35
38	Optical Emission of Individual GaN Nanocolumns Analyzed with High Spatial Resolution. Nano Letters, 2015, 15, 5105-5109.	9.1	35
39	Growth and coalescence behavior of semipolar \$(11{ar {2}}2)\$ GaN on preâ€structured râ€plane sapphire substrates. Physica Status Solidi (B): Basic Research, 2011, 248, 588-593.	1.5	34
40	Determination of carrier diffusion length in GaN. Journal of Applied Physics, 2015, 117, .	2.5	33
41	Complex excitonic recombination kinetics in ZnO: Capture, relaxation, and recombination from steady state. Applied Physics Letters, 2007, 90, 041917.	3.3	31
42	Micro-Raman and cathodoluminescence studies of epitaxial laterally overgrown GaN with tungsten masks: A method to map the free-carrier concentration of thick GaN samples. Applied Physics Letters, 2000, 76, 3418-3420.	3.3	30
43	Nano-scale luminescence characterization of individual InGaN/GaN quantum wells stacked in a microcavity using scanning transmission electron microscope cathodoluminescence. Applied Physics Letters, 2014, 105, 032101.	3.3	30
44	Structure and luminescence of (Ca,Sr)2SiS4 : Eu2+phosphors. Journal Physics D: Applied Physics, 2010, 43, 085401.	2.8	29
45	Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet. Applied Physics Letters, 2015, 106, .	3.3	29
46	Analysis of point defects in AlN epilayers by cathodoluminescence spectroscopy. Applied Physics Letters, 2009, 95, .	3.3	28
47	ZnO MOVPE growth: From local impurity incorporation towards p-type doping. Superlattices and Microstructures, 2005, 38, 245-255.	3.1	27
48	Semipolar GaInN/GaN lightâ€emitting diodes grown on honeycomb patterned substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2140-2143.	0.8	27
49	Anti-phase domains in cubic GaN. Journal of Applied Physics, 2011, 110, .	2.5	26
50	Optical studies of strain and defect distribution in semipolar (11Â⁻01) GaN on patterned Si substrates. Journal of Applied Physics, 2013, 114, 113502.	2.5	25
51	Non-planar Selective Area Growth and Characterization of GaN and AlGaN. Japanese Journal of Applied Physics, 2003, 42, 6276-6283.	1.5	24
52	Blue-to-green single photons from InGaN/GaN dot-in-a-nanowire ordered arrays. Europhysics Letters, 2015, 111, 24001.	2.0	24
53	MOVPEâ€Growth of InGaSb/AIP/GaP(001) Quantum Dots for Nanoscale Memory Applications. Physica Status Solidi (B): Basic Research, 2018, 255, 1800182.	1.5	24
54	A Comparison of Rutherford Backscattering Spectroscopy and X-Ray Diffraction to Determine the Composition of Thick InGaN Epilayers. Physica Status Solidi (B): Basic Research, 2001, 228, 41-44.	1.5	23

#	Article	IF	CITATIONS
55	Metal Organic Vapor Phase Epitaxy of ZnO on GaN/Si(111) Using Tertiary-Butanol as O-Precursor. Japanese Journal of Applied Physics, 2003, 42, 7474-7477.	1.5	23
56	Homoepitaxy of ZnO: from the substrates to doping. Physica Status Solidi (B): Basic Research, 2007, 244, 1451-1457.	1.5	23
57	GalnNâ€based LED structures on selectively grown semiâ€polar crystal facets. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1407-1413.	1.8	22
58	Eliminating stacking faults in semi-polar GaN by AlN interlayers. Applied Physics Letters, 2011, 99, 021905.	3.3	22
59	Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes. Japanese Journal of Applied Physics, 2016, 55, 05FJ09.	1.5	22
60	InGaAs quantum wires and wells on V-grooved InP substrates. Journal of Applied Physics, 1999, 86, 5207-5214.	2.5	21
61	Microscopic correlation of redshifted luminescence and surface defects in thick InxGa1â^'xN layers. Applied Physics Letters, 2002, 80, 3524-3526.	3.3	21
62	High wavelength tunability of InGaN quantum wells grown on semipolar GaN pyramid facets. Physica Status Solidi (B): Basic Research, 2011, 248, 605-610.	1.5	21
63	Excitonic transport in ZnO. Journal of Materials Research, 2012, 27, 2225-2231.	2.6	21
64	Epitaxial lateral overgrowth of non-polar GaN(11̄00) on Si(112) patterned substrates by MOCVD. Journal of Crystal Growth, 2011, 314, 129-135.	1.5	20
65	Time-resolved cathodoluminescence of Mg-doped GaN. Applied Physics Letters, 2008, 93, .	3.3	19
66	Direct imaging of Indium-rich triangular nanoprisms self-organized formed at the edges of InGaN/GaN core-shell nanorods. Scientific Reports, 2018, 8, 16026.	3.3	19
67	High Quality GaN Grown by Facet-Controlled ELO (FACELO) Technique. Physica Status Solidi A, 2002, 194, 545-549.	1.7	18
68	Gallium-nitride-based devices on silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1940-1949.	0.8	18
69	STEM L investigations on the influence of stacking faults on the optical emission of cubic GaN epilayers and cubic GaN/AIN multiâ€quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 469-472.	0.8	18
70	Influence of composition, strain, and electric field anisotropy on different emission colors and recombination dynamics from InGaN nanodisks in pencil-like GaN nanowires. Physical Review B, 2016, 93, .	3.2	18
71	Local strain distribution of hexagonal GaN pyramids. Journal of Crystal Growth, 1998, 189-190, 630-633.	1.5	17
72	Compositional inhomogeneities in InGaN studied by transmission electron microscopy and spatially resolved cathodoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 279-282.	3.5	17

#	Article	IF	CITATIONS
73	<i>In situ</i> anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy. Journal of Applied Physics, 2014, 116, .	2.5	17
74	Direct imaging of local strain relaxation along the side facets and the edges of hexagonal GaN pyramids by cathodoluminescence microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 552-556.	2.7	16
75	Spatial variation of luminescence in thick GaN films. Applied Physics Letters, 2001, 78, 1222-1224.	3.3	16
76	Heteroepitaxy and nitrogen doping of high-quality ZnO. Journal of Crystal Growth, 2004, 272, 800-804.	1.5	16
77	Vapour transport growth of ZnO nanorods. Applied Physics A: Materials Science and Processing, 2007, 88, 17-20.	2.3	16
78	Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy. Journal of Applied Physics, 2008, 104, 083510.	2.5	16
79	Growth and stacking fault reduction in semiâ€polar GaN films on planar Si(112) and Si(113). Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 507-510.	0.8	16
80	Compositionally graded InGaN layers grown on vicinal N-face GaN substrates by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2017, 465, 55-59.	1.5	16
81	Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy. Applied Physics Letters, 2020, 116, .	3.3	16
82	The origin of the PL photoluminescence Stokes shift in ternary group-III nitrides: field effects and localization. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1835-1845.	0.8	15
83	Indium incorporation in GalnN/GaN quantum well structures on polar and nonpolar surfaces. Physica Status Solidi (B): Basic Research, 2011, 248, 600-604.	1.5	15
84	MOVPE growth of semi-polar GaN light-emitting diode structures on planar Si(112) and Si(113) substrates. Journal of Crystal Growth, 2013, 370, 288-292.	1.5	15
85	Time-resolved microphotoluminescence of epitaxial laterally overgrown GaN. Applied Physics Letters, 1999, 75, 3647-3649.	3.3	14
86	MOVPE of CuGaSe2 on GaAs in the presence of a CuxSe secondary phase. Journal of Crystal Growth, 2011, 315, 82-86.	1.5	14
87	Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy. Scientific Reports, 2017, 7, 46420.	3.3	14
88	Colorâ€Tunable 3D InGaN/GaN Multiâ€Quantumâ€Well Lightâ€Emittingâ€Diode Based on Microfacet Emission a Programmable Driving Power Supply. Advanced Optical Materials, 2021, 9, .	ind 7.3	14
89	Direct evidence for selective impurity incorporation at the crystal domain boundaries in epitaxial ZnO layers. Applied Physics Letters, 2004, 85, 1976-1978.	3.3	13
90	Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. Journal of Applied Physics, 2009, 105, 016103.	2.5	13

#	Article	IF	CITATIONS
91	Green to blue polarization compensated c-axis oriented multi-quantum wells by AlGaInN barrier layers. Applied Physics Letters, 2013, 102, .	3.3	13
92	Growth of InGaN/GaN core–shell structures on selectively etched GaN rods by molecular beam epitaxy. Journal of Crystal Growth, 2014, 392, 5-10.	1.5	13
93	Optical micro-characterization of group-III-nitrides: correlation of structural, electronic and optical properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1795-1815.	0.8	12
94	Microâ€structural anisotropy of aâ€plane GaN analyzed by high resolution Xâ€ray diffraction. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S498.	0.8	12
95	Spectrally and timeâ€resolved cathodoluminescence microscopy of semipolar InGaN SQW on (11\$overline {2} \$2) and (10\$overline {1} \$1) pyramid facets. Physica Status Solidi (B): Basic Research, 2011, 248, 632-637.	1.5	12
96	Symmetry dependent optoelectronic properties of grain boundaries in polycrystalline Cu(In,Ga)Se2 thin films. Journal of Applied Physics, 2014, 115, 023514.	2.5	12
97	Improvement of optical quality of semipolar (112Â ⁻ 2) GaN on <i>m-</i> plane sapphire by <i>in-situ</i> epitaxial lateral overgrowth. Journal of Applied Physics, 2016, 119, .	2.5	12
98	Microscopic nature of crystal phase quantum dots in ultrathin GaAs nanowires by nanoscale luminescence characterization. New Journal of Physics, 2016, 18, 063009.	2.9	12
99	Strong morphological dependence of luminescence efficiency and emission wavelength in hexagonal GaN crystallites directly imaged by scanning cathodoluminescence microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 165-169.	3.5	11
100	AlInN/GaN based multi quantum well structures – growth and optical properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S451.	0.8	11
101	Microscopic distribution of extended defects and blockage of threading dislocations by stacking faults in semipolar (11Â ⁻ 01) GaN revealed from spatially resolved luminescence. Applied Physics Letters, 2013, 103, .	3.3	11
102	Theoretical study of time-resolved luminescence in semiconductors. IV. Lateral inhomogeneities. Journal of Applied Physics, 2017, 121, .	2.5	11
103	Spatial Variation of Luminescence of InGaN Alloys Measured by Highly-Spatially-Resolved Scanning Catholuminescence. Physica Status Solidi (B): Basic Research, 2001, 228, 35-39.	1.5	10
104	Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 19-23.	3.5	10
105	Well width study of InGaN multiple quantum wells for blue–green emitter. Journal of Crystal Growth, 2010, 312, 3428-3433.	1.5	10
106	Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001). Nanotechnology, 2012, 23, 335201.	2.6	10
107	Ordered arrays of InGaN/GaN dot-in-a-wire nanostructures as single photon emitters. Proceedings of SPIE, 2015, , .	0.8	10
108	Impact of Structural Properties on the Mechanisms of Optical Amplification in Cubic GalnN. Physica Status Solidi (B): Basic Research, 1999, 216, 471-476.	1.5	9

#	Article	IF	CITATIONS
109	Metalorganic vapor phase epitaxy of ZnO: towards p-type conductivity. , 2007, 6474, 32.		9
110	Investigation of vertical compositional gradients in Cu(In,Ca)Se2 by highly spatially and spectrally resolved cathodoluminescence microscopy. Thin Solid Films, 2013, 535, 270-274.	1.8	9
111	Individually resolved luminescence from closely stacked GaN/AIN quantum wells. Photonics Research, 2020, 8, 610.	7.0	8
112	Epitaxial lateral overgrowth of GaN structures: spatially resolved characterization by cathodoluminescence microscopy and micro-Raman spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 117-121.	3.5	7
113	Luminescence of ZnCdSe/ZnSe ridge quantum wires. Applied Physics Letters, 1999, 75, 974-976.	3.3	7
114	Comparison of the Mechanism of Optical Amplification in InGaN/GaN Heterostructures Grown by Molecular Beam Epitaxy and MOCVD. Physica Status Solidi A, 2000, 180, 327-332.	1.7	7
115	Semipolar GalnN quantum well structures on large area substrates. Physica Status Solidi (B): Basic Research, 2012, 249, 464-467.	1.5	7
116	Nanoscale cathodoluminescene imaging of Illâ€nitrideâ€based LEDs with semipolar quantum wells in a scanning transmission electron microscope. Physica Status Solidi (B): Basic Research, 2016, 253, 112-117.	1.5	7
117	Ordered arrays of defect-free GaN nanocolumns with very narrow excitonic emission line width. Journal of Crystal Growth, 2019, 525, 125189.	1.5	7
118	Growth of QW structures with high indium concentration on -plane and -plane surfaces by MOVPE. Journal of Crystal Growth, 2008, 310, 4987-4991.	1.5	6
119	Luminescence Properties of Photonic Crystal InGaN/GaN Light Emitting Layers on Silicon-on-Insulator. Electrochemical and Solid-State Letters, 2010, 13, H343.	2.2	6
120	GaN-Based Vertical Cavities with All Dielectric Reflectors by Epitaxial Lateral Overgrowth. Japanese Journal of Applied Physics, 2013, 52, 08JH03.	1.5	6
121	InGaN: Direct correlation of nanoscopic morphology features with optical and structural properties. Applied Physics Letters, 2014, 105, 072108.	3.3	6
122	Indium-incorporation efficiency in semipolar (11-22) oriented InGaN-based light emitting diodes. , 2015, ,		6
123	Polarization engineering of <i>c</i> â€plane InGaN quantum wells by pulsedâ€flow growth of AlInGaN barriers. Physica Status Solidi (B): Basic Research, 2016, 253, 118-125.	1.5	6
124	Selective area growth of AlN/GaN nanocolumns on (0001) and (11–22) GaN/sapphire for semi-polar and non-polar AlN pseudo-templates. Nanotechnology, 2017, 28, 365704.	2.6	6
125	Demonstration of lateral epitaxial growth of AlN on Si (1 1 1) at low temperatures by pulsed reactive sputter epitaxy. Journal of Crystal Growth, 2021, 571, 126250.	1.5	6
126	Molecular Beam Epitaxial Growth and Characterization of GaAs Films on Thin Si Substrates. Japanese Journal of Applied Physics, 1998, 37, 39-44.	1.5	5

#	Article	IF	CITATIONS
127	Impact of the ZnO buffer on the optical properties of GaN: time resolved micro-photoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 163-167.	3.5	5
128	Optical properties of nonpolar (1-100) and semipolar (1-101)GaN grown by MOCVD on Si patterned substrates. Proceedings of SPIE, 2011, , .	0.8	5
129	Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS. Materials Research Express, 2016, 3, 106506.	1.6	5
130	Embedded GaN nanostripes on <i>c</i> â€sapphire for DFB lasers with semipolar quantum wells. Physica Status Solidi (B): Basic Research, 2016, 253, 180-185.	1.5	5
131	Clustered quantum dots in single GaN islands formed at threading dislocations. Japanese Journal of Applied Physics, 2016, 55, 05FF04.	1.5	5
132	A study of methyl bromide emissions from automobiles burning leaded gasoline using standardized vehicle testing procedures. Geophysical Research Letters, 2000, 27, 1423-1426.	4.0	4
133	Microscopic spatial distribution of bound excitons in high-quality ZnO. Journal of Crystal Growth, 2004, 272, 785-788.	1.5	4
134	Blue light emitting diodes on Si(001) grown by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 41-44.	0.8	4
135	Effect of MOCVD growth conditions on the optical properties of semipolar (1-101) GaN on Si patterned substrates. Proceedings of SPIE, 2012, , .	0.8	4
136	Advances in MBE Selective Area Growth of III-Nitride Nanostructures: From NanoLEDs to Pseudo Substrates. International Journal of High Speed Electronics and Systems, 2014, 23, 1450020.	0.7	4
137	Structural and optical nanoscale analysis of GaN core–shell microrod arrays fabricated by combined top-down and bottom-up process on Si(111). Japanese Journal of Applied Physics, 2016, 55, 05FF02.	1.5	4
138	Nanoscale mapping of carrier recombination in GaAs/AlGaAs core-multishell nanowires by cathodoluminescence imaging in a scanning transmission electron microscope. Applied Physics Letters, 2019, 115, 243102.	3.3	4
139	Time-resolved micro-photoluminescence of epitaxial laterally overgrown GaN. Journal of Luminescence, 2000, 87-89, 1192-1195.	3.1	3
140	MOVPE growth of highâ€quality Al _{0.1} Ga _{0.9} N on Si(111) substrates for UV‣EDs. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S455.	0.8	3
141	Determination of carrier diffusion length in p- and n-type GaN. , 2014, , .		3
142	Cathodoluminescence nano-characterization of individual GaN/AIN quantum disks embedded in nanowires. Applied Physics Letters, 2020, 117, 133106.	3.3	3
143	Recent progress in nonpolar and semi-polar GaN light emitters on patterned Si substrates. , 2018, , .		3
144	Spatially resolved investigations of the excitonic luminescence in GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 192-196.	3.5	2

#	Article	IF	CITATIONS
145	Possible impact of surface morphology on stimulated emission in GaN–AlGaN double heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 557-561.	2.7	2
146	Optical Investigations of AlGaN on GaN Epitaxial Films. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	2
147	Optical and structural characterization of a self-aligned single electron transitor structure by cathodoluminescence microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 363-366.	2.7	2
148	Exciton dynamics in ZnCdSe/ZnSe ridge quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 526-530.	2.7	2
149	Spectral features in different sized InGaN/GaN micropyramids. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2387-2389.	0.8	2
150	Highly spatially resolved Cathodoluminescence of Single GaN Quantum Dots directly performed in a Scanning Transmission Electron Microscope. Microscopy and Microanalysis, 2012, 18, 1878-1879.	0.4	2
151	Spatially resolved optical emission of cubic GaN/AlN multi-quantum well structures. Materials Research Society Symposia Proceedings, 2014, 1736, 25.	0.1	2
152	Enhancement of optical and structural quality of semipolar (11-22) GaN by introducing nanoporous SiNxinterlayers. , 2015, , .		2
153	Defect reduced selectively grown GaN pyramids as template for green InGaN quantum wells. Physica Status Solidi (B): Basic Research, 2016, 253, 67-72.	1.5	2
154	Nanoscale cathodoluminescence of stacking faults and partial dislocations in <i>a</i> â€plane GaN. Physica Status Solidi (B): Basic Research, 2016, 253, 73-77.	1.5	2
155	Surface development of a brazing alloy during heat treatment–a comparison between UHV and APXPS. Journal of Physics Condensed Matter, 2018, 30, 024004.	1.8	2
156	Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film. Japanese Journal of Applied Physics, 2019, 58, 065503.	1.5	2
157	Optical and Structural Properties of Nitride Based Nanostructures. Springer Series in Solid-state Sciences, 2020, , 135-201.	0.3	2
158	Correlating yellow and blue luminescence with carbon doping in GaN. Journal of Crystal Growth, 2022, 586, 126634.	1.5	2
159	Threading dislocation reduction in GaAs films on thin Si substrates. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 772-776.	2.7	1
160	Direct Imaging of the Crystalline and Chemical Nanostructure of GA,IN-Nitrides by Highly Spatially-, Spectrally- and Time-Resolved Cathodoluminescence. Solid State Phenomena, 1998, 63-64, 221-228.	0.3	1
161	Optical Investigations of AlGaN on GaN Epitaxial Films. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 244-249.	1.0	1
162	Correlation between Structural Properties and Optical Amplification in InGaN/GaN Heterostructures Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1999, 595, 1.	0.1	1

#	Article	IF	CITATIONS
163	Response to "Comment on â€~Low Stokes shift in thick and homogeneous InGaN epilayers' ―[Appl. P Lett 81, 1353 (2002)]. Applied Physics Letters, 2002, 81, 1355-1356.	hys. 3.3	1
164	Optical evaluation of pretreated InGaN quantum well structures. Materials Research Society Symposia Proceedings, 2003, 798, 598.	0.1	1
165	Localization versus carrier-screening effects in InGaN quantum wells $\hat{a} \in$ " A time-resolved cathodoluminescence study. AIP Conference Proceedings, 2005, , .	0.4	1
166	Excitonic transport in ZnO. Proceedings of SPIE, 2012, , .	0.8	1
167	Direct nano-scale correlation of structural and optical properties of lattice matched AlInN/AlGaN DBRs using helium temperature scanning transmission electron microscopy cathodoluminescence. Microscopy and Microanalysis, 2012, 18, 1874-1875.	0.4	1
168	Direct imaging of GaN Pyramids covered by InGaN Single Quantum Well using nano-scale Scanning Transmission Electron Microscopy Cathodoluminescence. Microscopy and Microanalysis, 2012, 18, 1838-1839.	0.4	1
169	Cathodoluminescence directly performed in a transmission electron microscope: nanoscale correlation of structural and optical properties. Microscopy and Microanalysis, 2012, 18, 1834-1835.	0.4	1
170	Optical properties of <i>m</i> -plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach. Proceedings of SPIE, 2014, , .	0.8	1
171	Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si. Proceedings of SPIE, 2014, , .	0.8	1
172	Direct microscopic correlation of real structure and optical properties of semipolar GaN based on preâ€patterned <i>r</i> â€plane sapphire. Physica Status Solidi (B): Basic Research, 2016, 253, 54-60.	1.5	1
173	Characteristic emission from quantum dot-like intersection nodes of dislocations in GaN. Journal of Physics: Conference Series, 2021, 1851, 012013.	0.4	1
174	Optical Properties and Microstructure of InGaN Grown by Molecular Beam Epitaxy. Acta Physica Polonica A, 1998, 94, 260-264.	0.5	1
175	Correlation between structural properties and optical amplification in InGaN/GaN heterostructures grown by molecular beam epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 2000, 5, 689-695.	1.0	1
176	Microscopic Luminescence Properties of ZnO and ZnO Based Heterostructures. Acta Physica Polonica A, 2006, 110, 103-110.	0.5	1
177	Nitride Microcavities and Single Quantum Dots for Classical and Non-classical Light Emitters. Springer Series in Solid-state Sciences, 2020, , 453-504.	0.3	1
178	Lasing and Gain Mechanisms in AlGaN-GaN-Double Heterostructures: Correlation with Structural Properties. Materials Science Forum, 1998, 264-268, 1291-1294.	0.3	0
179	Statistical Analysis of Local Composition and Luminescence in InGaN Grown by Molecular Beam Epitaxy. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
180	Comparison of Different Epitaxial Lateral Overgrowth GaN Structures using SiO ₂ and Tungsten Mask by Cathodoluminescence Microscopy and Micro-Raman Spectroscopy. Materials Science Forum, 2000, 338-342, 1483-1486.	0.3	0

#	Article	IF	CITATIONS
181	Impact of Epitaxial Lateral Overgrowth on the Recombination Dynamics in GaN Determined by Time Resolved Micro-Photoluminescence Spectroscopy. Materials Science Forum, 2000, 338-342, 1575-1578.	0.3	0
182	Variation of structural and optical properties across an AlGaN/GaN HEMT structure directly imaged by cathodoluminescence microscopy. Physica Status Solidi A, 2003, 200, 183-186.	1.7	0
183	Growth-direction dependence of optical properties in epitaxially laterally overgrown GaN. , 0, , .		0
184	Microscopic Spatial Distribution of Bound Excitons in High-Quality ZnO. Materials Science Forum, 2005, 483-485, 1065-0.	0.3	0
185	Growth and Characterization of Homoepitaxial ZnO Thin Films Grown by CVD. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
186	Thin film growth of ZnO and its relation to substrate properties. , 2007, , .		0
187	Microscopic recombination kinetics in high quality, fully coalesced a-plane GaN ELO structures investigated by ps-time-resolved cathodoluminescence microscopy. , 2008, , .		0
188	Depth distribution of carrier lifetimes in semipolar (11macron01) GaN grown by MOCVD on patterned Si substrates. Proceedings of SPIE, 2013, , .	0.8	0
189	GaN laser structure with semipolar quantum wells and embedded nanostripes. , 2013, , .		0
190	Nanoscale Characterization of Structural and Optical Properties of Nitride Nanostructures Using Helium Temperature Scanning Electron Microscopy Cathodoluminescence. , 2014, , .		0
191	Extended defects in GaN nanocolumns characterized by cathodoluminescence directly performed in a transmission electron microscope. Turkish Journal of Physics, 2014, 38, 323-327.	1.1	0
192	Strong exciton-photon coupling in hybrid InGaN-based microcavities on GaN substrates. Proceedings of SPIE, 2015, , .	0.8	0
193	Nanometer-scale Resolved Cathodoluminescence Imaging: New Insights into GaAs/AlGaAs Core-shell Nanowire Lasers. Microscopy and Microanalysis, 2017, 23, 1470-1471.	0.4	0
194	Excitons and Phonons in GaN. Magnetooptical and Spatially Resolved Investigations. Acta Physica Polonica A, 1998, 94, 125-137.	0.5	0
195	Statistical Analysis of Local Composition and Luminescence in InGaN Grown by Molecular Beam Epitaxy. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 263-268.	1.0	0
196	Desorption induced formation of low-density GaN quantum dots: nanoscale correlation of structural and optical properties. Journal Physics D: Applied Physics, 2022, 55, 145102.	2.8	0
197	Direct Imaging of the Carrier Capture into Individual InP Quantum Dots of a Semiconductor Disk Laser Membrane. ACS Nano, 2022, 16, 4619-4628.	14.6	0