Ying E Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003, 425, 577-584.	27.8	4,773
2	Non-Smad pathways in TGF- \hat{l}^2 signaling. Cell Research, 2009, 19, 128-139.	12.0	1,486
3	Transcriptional Activators of TGF-β Responses: Smads. Cell, 1998, 95, 737-740.	28.9	1,034
4	Receptor-associated Mad homologues synergize as effectors of the TGF-Î ² response. Nature, 1996, 383, 168-172.	27.8	824
5	TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO Journal, 2002, 21, 3749-3759.	7.8	628
6	TRAF6 Mediates Smad-Independent Activation of JNK and p38 by TGF-β. Molecular Cell, 2008, 31, 918-924.	9.7	498
7	Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022129.	5.5	496
8	The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes and Development, 1998, 12, 2153-2163.	5.9	481
9	Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 974-979.	7.1	473
10	Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature, 2011, 480, 113-117.	27.8	429
11	Ubiquitin Ligase Smurf1 Controls Osteoblast Activity and Bone Homeostasis by Targeting MEKK2 for Degradation. Cell, 2005, 121, 101-113.	28.9	325
12	The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Current Biology, 1997, 7, 270-276.	3.9	289
13	Tumor Necrosis Factor Promotes Runx2 Degradation through Up-regulation of Smurf1 and Smurf2 in Osteoblasts. Journal of Biological Chemistry, 2006, 281, 4326-4333.	3.4	261
14	Regulation of Smad signalling by protein associations and signalling crosstalk. Trends in Cell Biology, 1999, 9, 274-279.	7.9	242
15	Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway. Journal of Biological Chemistry, 2017, 292, 4302-4312.	3.4	201
16	Inhibition of the TGF- \hat{I}^2 receptor I kinase promotes hematopoiesis in MDS. Blood, 2008, 112, 3434-3443.	1.4	157
17	Intracellular signalling: The Mad way to do it. Current Biology, 1996, 6, 1226-1229.	3.9	154
18	A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nature Medicine, 2012, 18, 227-234.	30.7	140

YING E ZHANG

#	Article	IF	CITATIONS
19	Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell, 2006, 9, 445-457.	16.8	136
20	Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells. PLoS Genetics, 2008, 4, e1000241.	3.5	125
21	Ubiquitin Ligase Smurf1 Mediates Tumor Necrosis Factor-induced Systemic Bone Loss by Promoting Proteasomal Degradation of Bone Morphogenetic Signaling Proteins. Journal of Biological Chemistry, 2008, 283, 23084-23092.	3.4	121
22	Transcriptional Regulation of the Transforming Growth Factor-β-inducible Mouse Germ Line Ig α Constant Region Gene by Functional Cooperation of Smad, CREB, and AML Family Members. Journal of Biological Chemistry, 2000, 275, 16979-16985.	3.4	119
23	Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3. EMBO Journal, 2011, 30, 4777-4789.	7.8	115
24	Subunits Coupling H+ Transport and ATP Synthesis in the Escherichia coli ATP Synthase. Journal of Biological Chemistry, 1995, 270, 24609-24614.	3.4	101
25	Structural and Functional Characterization of the Transforming Growth Factor-β-induced Smad3/c-Jun Transcriptional Cooperativity. Journal of Biological Chemistry, 2000, 275, 38802-38812.	3.4	93
26	Smad-Binding Defective Mutant of Transforming Growth Factor Î ² Type I Receptor Enhances Tumorigenesis but Suppresses Metastasis of Breast Cancer Cell Lines. Cancer Research, 2004, 64, 4523-4530.	0.9	90
27	The Î ³ subunit in theEscherichia coliATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the FOpart. FEBS Letters, 1995, 368, 235-238.	2.8	87
28	Roles of Smad3 in TGF-Î ² Signaling During Carcinogenesis. Critical Reviews in Eukaryotic Gene Expression, 2007, 17, 281-293.	0.9	86
29	Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. ELife, 2014, 3, .	6.0	84
30	Smad3 Prevents β-Catenin Degradation and Facilitates β-Catenin Nuclear Translocation in Chondrocytes. Journal of Biological Chemistry, 2010, 285, 8703-8710.	3.4	81
31	Smurf1 Facilitates Myogenic Differentiation and Antagonizes the Bone Morphogenetic Protein-2-induced Osteoblast Conversion by Targeting Smad5 for Degradation. Journal of Biological Chemistry, 2003, 278, 39029-39036.	3.4	80
32	Smad Ubiquitination Regulatory Factor 2 Promotes Metastasis of Breast Cancer Cells by Enhancing Migration and Invasiveness. Cancer Research, 2009, 69, 735-740.	0.9	75
33	Mechanistic insight into contextual TGF-β signaling. Current Opinion in Cell Biology, 2018, 51, 1-7.	5.4	74
34	T Cell Receptor-Regulated TGF-Î ² Type I Receptor Expression Determines T Cell Quiescence and Activation. Immunity, 2018, 48, 745-759.e6.	14.3	73
35	Changing the Ion Binding Specificity of the Escherichia coli H+-transporting ATP Synthase by Directed Mutagenesis of Subunit c. Journal of Biological Chemistry, 1995, 270, 87-93.	3.4	71
36	Direct Regulation of Alternative Splicing by SMAD3 through PCBP1 Is Essential to the Tumor-Promoting Role of TGF-1². Molecular Cell, 2016, 64, 549-564.	9.7	70

YING E ZHANG

#	Article	IF	CITATIONS
37	A Negative Feedback Control of Transforming Growth Factor-Î ² Signaling by Glycogen Synthase Kinase 3-mediated Smad3 Linker Phosphorylation at Ser-204. Journal of Biological Chemistry, 2009, 284, 19808-19816.	3.4	69
38	TGF-Î ² -induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene, 2019, 38, 3185-3200.	5.9	64
39	CNF1-induced Ubiquitylation and Proteasome Destruction of Activated RhoA Is Impaired in Smurf1â^'/â^'Cells. Molecular Biology of the Cell, 2006, 17, 2489-2497.	2.1	57
40	Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM+ AFP+ hepatocellular carcinoma. Oncogene, 2015, 34, 5095-5104.	5.9	57
41	Defining the Domain of Binding of F1 Subunit ε with the Polar Loop of F0 Subunit c in theEscherichia coli ATP Synthase. Journal of Biological Chemistry, 1999, 274, 17011-17016.	3.4	55
42	Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells. Journal of Biological Chemistry, 2013, 288, 21784-21792.	3.4	42
43	Protection from β-cell apoptosis by inhibition of TGF-β/Smad3 signaling. Cell Death and Disease, 2020, 11, 184.	6.3	39
44	Transforming Growth Factor-β: An Agent of Change in the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 764727.	3.7	29
45	Correlations of Structure and Function in H+Translocating Subunit c of F1F0ATP Synthase. Annals of the New York Academy of Sciences, 1992, 671, 323-334.	3.8	20
46	Non-degradative ubiquitination in Smad-dependent TGF-beta signaling. Cell and Bioscience, 2011, 1, 43.	4.8	19
47	Non-proteolytic ubiquitin modification of PPARÎ ³ by Smurf1 protects the liver from steatosis. PLoS Biology, 2018, 16, e3000091.	5.6	19
48	Integration of TGF-β-induced Smad signaling in the insulin-induced transcriptional response in endothelial cells. Scientific Reports, 2019, 9, 16992.	3.3	15
49	SIRT7 Deacetylates STRAP to Regulate p53 Activity and Stability. International Journal of Molecular Sciences, 2020, 21, 4122.	4.1	13
50	Inhibition of Non-Small Cell Lung Cancer Cells by Oxy210, an Oxysterol-Derivative that Antagonizes TGFβ and Hedgehog Signaling. Cells, 2019, 8, 1297.	4.1	12
51	Oxy210, a Semi-Synthetic Oxysterol, Exerts Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and Modulation of Macrophage Polarization. International Journal of Molecular Sciences, 2022, 23, 5478.	4.1	9
52	Phosphorylation of SMURF2 by ATM exerts a negative feedback control of DNA damage response. Journal of Biological Chemistry, 2020, 295, 18485-18493.	3.4	8
53	A special issue on TGF-Î ² signaling and biology. Cell and Bioscience, 2011, 1, 39.	4.8	6
54	Stopped in Translation: EMT Control Meets Eukaryotic Elongation. Developmental Cell, 2011, 20, 289-290.	7.0	3

YING E ZHANG

#	Article	IF	CITATIONS
55	Redirecting RNA splicing by SMAD3 turns TGF-β into a tumor promoter. Molecular and Cellular Oncology, 2017, 4, e1265699.	0.7	3
56	Generation of Smurf2 Conditional Knockout Mice. International Journal of Biological Sciences, 2018, 14, 542-548.	6.4	2
57	Smurfs have "fused―into the asymmetric division of stem cells. Protein and Cell, 2011, 2, 2-4.	11.0	0
58	Abstract 4057: Mono-ubiquitination of Smad2/3 by Smurf2 regulates TGF- \hat{l}^2 transcriptional response. , 2011, , .		0