Joel D Richter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8499279/publications.pdf

Version: 2024-02-01

46 papers 7,590 citations

201674 27 h-index 243625 44 g-index

48 all docs 48 docs citations

48 times ranked

8610 citing authors

#	Article	IF	CITATIONS
1	FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell, 2011, 146, 247-261.	28.9	1,864
2	Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 2005, 433, 477-480.	27.8	841
3	Translational control by CPEB: a means to the end. Nature Reviews Molecular Cell Biology, 2001, 2, 521-529.	37.0	528
4	CPEB: a life in translation. Trends in Biochemical Sciences, 2007, 32, 279-285.	7.5	479
5	CPEB-Mediated Cytoplasmic Polyadenylation and the Regulation of Experience-Dependent Translation of α-CaMKII mRNA at Synapses. Neuron, 1998, 21, 1129-1139.	8.1	478
6	Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature, 2000, 404, 302-307.	27.8	348
7	Symplekin and xGLD-2 Are Required for CPEB-Mediated Cytoplasmic Polyadenylation. Cell, 2004, 119, 641-651.	28.9	295
8	Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nature Reviews Neuroscience, 2015, 16, 595-605.	10.2	231
9	N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alphaCaMKII mRNA polyadenylation at synapses. EMBO Journal, 2002, 21, 2139-2148.	7.8	226
10	Germ Cell Differentiation and Synaptonemal Complex Formation Are Disrupted in CPEB Knockout Mice. Developmental Cell, 2001, 1, 201-213.	7.0	210
11	Cytoplasmic Polyadenylation Element Binding Proteins in Development, Health, and Disease. Annual Review of Cell and Developmental Biology, 2014, 30, 393-415.	9.4	201
12	CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature, 2011, 473, 105-108.	27.8	174
13	Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell, 2015, 163, 292-300.	28.9	172
14	The molecular biology of FMRP: new insights into fragile X syndrome. Nature Reviews Neuroscience, 2021, 22, 209-222.	10.2	164
15	Selective Modulation of Some Forms of Schaffer Collateral-CA1 Synaptic Plasticity in Mice With a Disruption of the CPEB-1 Gene. Learning and Memory, 2004, 11, 318-327.	1.3	142
16	Bidirectional Control of mRNA Translation and Synaptic Plasticity by the Cytoplasmic Polyadenylation Complex. Molecular Cell, 2012, 47, 253-266.	9.7	142
17	Cytoplasmic RNA-Binding Proteins and the Control of Complex Brain Function. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012344-a012344.	5.5	125
18	Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nature Medicine, 2013, 19, 1473-1477.	30.7	115

#	Article	IF	Citations
19	Translational Control in Oocyte Development. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002758-a002758.	5.5	101
20	Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learning and Memory, 2006, 13, 4-7.	1.3	95
21	Regulatory discrimination of mRNAs by FMRP controls mouse adult neural stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11397-E11405.	7.1	78
22	Selective translation of mRNAs at synapses. Current Opinion in Neurobiology, 2002, 12, 300-304.	4.2	70
23	FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Reports, 2020, 30, 4459-4472.e6.	6.4	63
24	Rethinking Unconventional Translation in Neurodegeneration. Cell, 2017, 171, 994-1000.	28.9	56
25	The nuclear experience of CPEB: Implications for RNA processing and translational control. Rna, 2010, 16, 338-348.	3.5	51
26	FMRP links optimal codons to mRNA stability in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30400-30411.	7.1	38
27	CPEB Control of NF-κB Nuclear Localization and Interleukin-6 Production Mediates Cellular Senescence. Molecular and Cellular Biology, 2011, 31, 2707-2714.	2.3	34
28	DEVELOPMENT: The Message Is in the Translation. Science, 2001, 293, 60-62.	12.6	33
29	Gld2-catalyzed $3\hat{a}\in^2$ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. Rna, 2016, 22, 1492-1499.	3.5	29
30	Breaking the Code of Polyadenylation-Induced Translation. Cell, 2008, 132, 335-337.	28.9	28
31	CPEB Regulation of TAK1 Synthesis Mediates Cytokine Production and the Inflammatory Immune Response. Molecular and Cellular Biology, 2015, 35, 610-618.	2.3	28
32	Translational control of synaptic plasticity. Biochemical Society Transactions, 2010, 38, 1527-1530.	3.4	21
33	Impaired neurodevelopment by the low complexity domain of CPEB4 reveals a convergent pathway with neurodegeneration. Scientific Reports, 2016, 6, 29395.	3.3	17
34	Essential role for non-canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism. Nucleic Acids Research, 2017, 45, 6793-6804.	14.5	17
35	Dynamic Control of Dendritic mRNA Expression by CNOT7 Regulates Synaptic Efficacy and Higher Cognitive Function. Cell Reports, 2017, 20, 683-696.	6.4	17
36	Ribosome profiling reveals novel regulation of <i>C9ORF72</i> GGGGCC repeat-containing RNA translation. Rna, 2022, 28, 123-138.	3.5	17

#	Article	IF	CITATIONS
37	Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice. Nucleic Acids Research, 2019, 47, e25-e25.	14.5	16
38	Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Molecular Autism, 2020, $11,78$.	4.9	10
39	Microsatellite Expansion Diseases: Repeat Toxicity Found in Translation. Neuron, 2017, 93, 249-251.	8.1	9
40	RNA and the synapse. Rna, 2015, 21, 716-717.	3 . 5	7
41	Oppositional poly(A) tail length regulation by FMRP and CPEB1. Rna, 2022, 28, 756-765.	3.5	6
42	RNA Transport (Partly) Revealed!. Neuron, 2004, 43, 442-443.	8.1	5
43	Do Fragile X Syndrome and Other Intellectual Disorders Converge at Aberrant Pre-mRNA Splicing?. Frontiers in Psychiatry, 2021, 12, 715346.	2.6	5
44	Noncanonical cytoplasmic poly(A) polymerases regulate RNA levels, alternative RNA processing, and synaptic plasticity but not hippocampal-dependent behaviours. RNA Biology, 2021, 18, 962-971.	3.1	1
45	CPEBâ€regulated translation: mechanisms and maladies. FASEB Journal, 2007, 21, A97.	0.5	0
46	<scp>CPEB1</scp> regulates the inflammatory immune response, phagocytosis, and alternative polyadenylation in microglia. Glia, 2022, 70, 1850-1863.	4.9	0