
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498713/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Infectious disease in an era of global change. Nature Reviews Microbiology, 2022, 20, 193-205.	28.6	509
2	Seroprevalence of Pteropine orthoreovirus in humans remain similar after nearly two decades (2001–2002 vs. 2017) in Tioman Island, Malaysia. Journal of Medical Virology, 2022, 94, 771-775.	5.0	6
3	Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study. Clinical Microbiology and Infection, 2022, 28, 612.e1-612.e7.	6.0	231
4	Deconvoluting virome-wide antibody epitope reactivity profiles. EBioMedicine, 2022, 75, 103747.	6.1	16
5	Presence of Recombinant Bat Coronavirus GCCDC1 in Cambodian Bats. Viruses, 2022, 14, 176.	3.3	2
6	Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses, 2022, 14, 150.	3.3	7
7	Human Nasal Epithelial Cells Sustain Persistent SARS-CoV-2 Infection <i>In Vitro</i> , despite Eliciting a Prolonged Antiviral Response. MBio, 2022, 13, e0343621.	4.1	12
8	The Species-Specific 282 Residue in the PB2 Subunit of the Polymerase Regulates RNA Synthesis and Replication of Influenza A Viruses Infecting Bat and Nonbat Hosts. Journal of Virology, 2022, 96, jvi0219021.	3.4	2
9	Decreased memory B cell frequencies in COVIDâ€19 delta variant vaccine breakthrough infection. EMBO Molecular Medicine, 2022, 14, e15227.	6.9	31
10	WHO international standard for SARS-CoV-2 antibodies to determine markers of protection. Lancet Microbe, The, 2022, 3, e81-e82.	7.3	56
11	Association of Homologous and Heterologous Vaccine Boosters With COVID-19 Incidence and Severity in Singapore. JAMA - Journal of the American Medical Association, 2022, 327, 1181.	7.4	21
12	Robust neutralizing antibody response to SARS-CoV-2 mRNA vaccination in adolescents and young adults with childhood-onset rheumatic diseases. Rheumatology, 2022, 61, 4472-4481.	1.9	10
13	Discrepant serological findings in SARSâ€CoVâ€2 PCRâ€negative hospitalized patients with fever and acute respiratory symptoms during the pandemic. Journal of Medical Virology, 2022, , .	5.0	1
14	Dynamics of Neutralizing Antibody and T-Cell Responses to SARS-CoV-2 and Variants of Concern after Primary Immunization with CoronaVac and Booster with BNT162b2 or ChAdOx1 in Health Care Workers. Vaccines, 2022, 10, 639.	4.4	18
15	Antibody Response of Heterologous vs Homologous Messenger RNA Vaccine Boosters Against the Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant: Interim Results from the PRIBIVAC Study, a Randomized Clinical Trial. Clinical Infectious Diseases, 2022, 75, 2088-2096.	5.8	23
16	Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. Pathogens, 2022, 11, 568.	2.8	8
17	Role of Animals in the COVID-19 Outbreak. , 2022, , 21-39.		0
18	Evaluation of the safety and immunogenicity of different COVID-19 vaccine combinations in healthy individuals: study protocol for a randomized, subject-blinded, controlled phase 3 trial [PRIBIVAC]. Trials, 2022, 23, .	1.6	0

#	Article	IF	CITATIONS
19	Viral Dynamics and Immune Correlates of Coronavirus Disease 2019 (COVID-19) Severity. Clinical Infectious Diseases, 2021, 73, e2932-e2942.	5.8	143
20	SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study. Lancet Infectious Diseases, The, 2021, 21, 333-343.	9.1	183
21	Lessons from the host defences of bats, a unique viral reservoir. Nature, 2021, 589, 363-370.	27.8	217
22	Henipaviruses (Paramyxoviridae). , 2021, , 355-361.		0
23	Bats and Coronaviruses in the Context of COVID-19. China CDC Weekly, 2021, 3, 153-155.	2.3	3
24	Positive RT-PCR detected in patients recovered from COVID-19. Annals of the Academy of Medicine, Singapore, 2021, 50, 191-194.	0.4	1
25	Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications, 2021, 12, 972.	12.8	276
26	Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Reports, 2021, 34, 108728.	6.4	568
27	Long-Term Humoral Immune Response in Persons with Asymptomatic or Mild SARS-CoV-2 Infection, Vietnam. Emerging Infectious Diseases, 2021, 27, 663-666.	4.3	14
28	Early detection of neutralizing antibodies against SARS-CoV-2 in COVID-19 patients in Thailand. PLoS ONE, 2021, 16, e0246864.	2.5	20
29	ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nature Ecology and Evolution, 2021, 5, 600-608.	7.8	83
30	Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. Journal of Experimental Medicine, 2021, 218, .	8.5	259
31	Decoding bat immunity: the need for a coordinated research approach. Nature Reviews Immunology, 2021, 21, 269-271.	22.7	29
32	Phenotypic Divergence of P Proteins of Australian Bat Lyssavirus Lineages Circulating in Microbats and Flying Foxes. Viruses, 2021, 13, 831.	3.3	4
33	A Virus-Specific Immune Rheostat in the Immunome of Patients Recovering From Mild COVID-19. Frontiers in Immunology, 2021, 12, 674279.	4.8	5
34	Systemic inflammation, innate immunity and pathogenesis after Zika virus infection in cynomolgus macaques are modulated by strain-specificity within the Asian lineage. Emerging Microbes and Infections, 2021, 10, 1457-1470.	6.5	4
35	Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe, The, 2021, 2, e240-e249.	7.3	322
36	Culture, expansion, and flow-cytometry-based functional analysis of pteropid bat MR1-restricted unconventional TÂcells. STAR Protocols, 2021, 2, 100487.	1.2	2

#	Article	IF	CITATIONS
37	Neutralizing Antibodies Titers and Side Effects in Response to BNT162b2 Vaccine in Healthcare Workers with and without Prior SARS-CoV-2 Infection. Vaccines, 2021, 9, 742.	4.4	39
38	Translation from bats to humans beyond infectious diseases. Journal of Experimental Medicine, 2021, 218, .	8.5	4
39	Pan-Sarbecovirus Neutralizing Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors. New England Journal of Medicine, 2021, 385, 1401-1406.	27.0	161
40	Bat virome research: the past, the present and the future. Current Opinion in Virology, 2021, 49, 68-80.	5.4	17
41	Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. Nature Communications, 2021, 12, 5113.	12.8	53
42	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
43	Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
44	Rapid measurement of SARS-CoV-2 spike T cells in whole blood from vaccinated and naturally infected individuals. Journal of Clinical Investigation, 2021, 131, .	8.2	89
45	Absence of SARS-CoV-2 antibodies in pre-pandemic plasma from children and adults in Vietnam. International Journal of Infectious Diseases, 2021, 111, 127-129.	3.3	7
46	Evaluation of a surrogate virus neutralization test for high-throughput serosurveillance of SARS-CoV-2. Journal of Virological Methods, 2021, 297, 114228.	2.1	25
47	SARS-CoV-2 neutralizing antibodies in patients with varying severity of acute COVID-19 illness. Scientific Reports, 2021, 11, 2062.	3.3	58
48	A new Hendra virus genotype found in Australian flying foxes. Virology Journal, 2021, 18, 197.	3.4	40
49	Identification of ZDHHC17 as a Potential Drug Target for Swine Acute Diarrhea Syndrome Coronavirus Infection. MBio, 2021, 12, e0234221.	4.1	11
50	Widely heterogeneous humoral and cellular immunity after mild SARS-CoV-2 infection in a homogeneous population of healthy young men. Emerging Microbes and Infections, 2021, 10, 2141-2150.	6.5	20
51	Neutralizing Activity and SARS-CoV-2 Vaccine mRNA Persistence in Serum and Breastmilk After BNT162b2 Vaccination in Lactating Women. Frontiers in Immunology, 2021, 12, 783975.	4.8	29
52	Robust dengue virus infection in bat cells and limited innate immune responses coupled with positive serology from bats in IndoMalaya and Australasia. Cellular and Molecular Life Sciences, 2020, 77, 1607-1622.	5.4	11
53	Optimizing dissection, sample collection and cell isolation protocols for frugivorous bats. Methods in Ecology and Evolution, 2020, 11, 150-158.	5.2	4
54	The temporal RNA virome patterns of a lesser dawn bat (Eonycteris spelaea) colony revealed by deep sequencing. Virus Evolution, 2020, 6, veaa017.	4.9	10

#	Article	IF	CITATIONS
55	Nipah@20: Lessons Learned from Another Virus with Pandemic Potential. MSphere, 2020, 5, .	2.9	21
56	A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nature Biotechnology, 2020, 38, 1073-1078.	17.5	1,042
5 7	Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8 during the Early Evolution of SARS-CoV-2. MBio, 2020, 11, .	4.1	245
58	SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, 584, 457-462.	27.8	1,744
59	Complementary regulation of caspase-1 and IL-1Î ² reveals additional mechanisms of dampened inflammation in bats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28939-28949.	7.1	51
60	Disentangling etiologies of CNS infections in Singapore using multiple correspondence analysis and random forest. Scientific Reports, 2020, 10, 18219.	3.3	6
61	Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathogens, 2020, 16, e1008758.	4.7	127
62	A Potent Postentry Restriction to Primate Lentiviruses in a Yinpterochiropteran Bat. MBio, 2020, 11, .	4.1	12
63	Neuroimaging in Zoonotic Outbreaks Affecting the Central Nervous System: Are We Fighting the Last War?. American Journal of Neuroradiology, 2020, 41, 1760-1767.	2.4	7
64	Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 2020, 11, 4235.	12.8	264
65	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
66	Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: an observational cohort study. Lancet, The, 2020, 396, 603-611.	13.7	394
67	Letter from Singapore: The clinical and research response to COVIDâ€19. Respirology, 2020, 25, 1101-1102.	2.3	10
68	SARS-CoV-2 neutralizing antibody levels are correlated with severity of COVID-19 pneumonia. Biomedicine and Pharmacotherapy, 2020, 130, 110629.	5.6	55
69	Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Reports, 2020, 33, 108345.	6.4	41
70	Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus. Viruses, 2020, 12, 1236.	3.3	6
71	Nipah virus dynamics in bats and implications for spillover to humans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29190-29201.	7.1	119

Detection of Recombinant Rousettus Bat Coronavirus GCCDC1 in Lesser Dawn Bats (Eonycteris) Tj ETQq0 0 0 rgBT $\frac{10}{3.3}$ Vorlock $\frac{10}{14}$ Tf 50 6

#	Article	IF	CITATIONS
73	Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerging Microbes and Infections, 2020, 9, 900-902.	6.5	89
74	Reply. Ophthalmology, 2020, 127, e104-e105.	5.2	2
75	Serological differentiation between COVID-19 and SARS infections. Emerging Microbes and Infections, 2020, 9, 1497-1505.	6.5	89
76	Human MAIT cell cytolytic effector proteins synergize to overcome carbapenem resistance in Escherichia coli. PLoS Biology, 2020, 18, e3000644.	5.6	37
77	Distinct Cell Transcriptomic Landscapes Upon Henipavirus Infections. Frontiers in Microbiology, 2020, 11, 986.	3.5	2
78	Positive Selection of a Serine Residue in Bat IRF3 Confers Enhanced Antiviral Protection. IScience, 2020, 23, 100958.	4.1	34
79	Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. Ophthalmology, 2020, 127, 977-979.	5.2	317
80	Novel Insights for Biosurveillance of Bat-Borne Viruses. Proceedings (mdpi), 2020, 50, .	0.2	0
81	Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA - Journal of the American Medical Association, 2020, 323, 1488.	7.4	1,700
82	From Hendra to Wuhan: what has been learned in responding to emerging zoonotic viruses. Lancet, The, 2020, 395, e33-e34.	13.7	74
83	Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infectious Diseases, The, 2020, 20, 445-454.	9.1	60
84	Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based Next-Generation Sequencing. MSphere, 2020, 5, .	2.9	73
85	Immunophenotyping monocytes, macrophages and granulocytes in the Pteropodid bat Eonycteris spelaea. Scientific Reports, 2020, 10, 309.	3.3	18
86	Acute experimental infection of bats and ferrets with Hendra virus: Insights into the early host response of the reservoir host and susceptible model species. PLoS Pathogens, 2020, 16, e1008412.	4.7	22
87	Connecting clusters of COVID-19: an epidemiological and serological investigation. Lancet Infectious Diseases, The, 2020, 20, 809-815.	9.1	229
88	Infectious KoRV-related retroviruses circulating in Australian bats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9529-9536.	7.1	31
89	MR1-Restricted T Cells with MAIT-like Characteristics Are Functionally Conserved in the Pteropid Bat Pteropus alecto. IScience, 2020, 23, 101876.	4.1	13
90	Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathogens, 2020, 16, e1009130.	4.7	98

#	Article	IF	CITATIONS
91	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	6.0	91
92	An unusual COVID-19 case with over four months of viral shedding in the presence of low neutralizing antibodies: a case report. Journal of Biomedical Research, 2020, 34, 470.	1.6	8
93	Tropism and neutralisation studies on bat influenza H17N10. Access Microbiology, 2020, 2, .	0.5	0
94	Title is missing!. , 2020, 18, e3000644.		0
95	Title is missing!. , 2020, 18, e3000644.		0
96	Title is missing!. , 2020, 18, e3000644.		0
97	Title is missing!. , 2020, 18, e3000644.		0
98	Title is missing!. , 2020, 18, e3000644.		0
99	Title is missing!. , 2020, 18, e3000644.		0
100	Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nature Microbiology, 2019, 4, 2035-2038.	13.3	35
101	Probe capture enrichment next-generation sequencing of complete foot-and-mouth disease virus genomes in clinical samples. Journal of Virological Methods, 2019, 272, 113703.	2.1	7
102	ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nature Communications, 2019, 10, 2820.	12.8	28
103	Serological evidence of MERS-CoV and HKU8-related CoV co-infection in Kenyan camels. Emerging Microbes and Infections, 2019, 8, 1528-1534.	6.5	18
104	Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. PLoS Biology, 2019, 17, e3000436.	5.6	23
105	Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerging Microbes and Infections, 2019, 8, 1314-1323.	6.5	49
106	Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.	2.1	70
107	Viruses in bats and potential spillover to animals and humans. Current Opinion in Virology, 2019, 34, 79-89.	5.4	195
108	High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress and Chaperones, 2019, 24, 835-849.	2.9	35

#	Article	IF	CITATIONS
109	Serological evidence and experimental infection of cynomolgus macaques with pteropine orthoreovirus reveal monkeys as potential hosts for transmission to humans. Emerging Microbes and Infections, 2019, 8, 787-795.	6.5	8
110	Studies on B Cells in the Fruit-Eating Black Flying Fox (Pteropus alecto). Frontiers in Immunology, 2019, 10, 489.	4.8	20
111	Taxonomy of the order Mononegavirales: update 2019. Archives of Virology, 2019, 164, 1967-1980.	2.1	224
112	Comparative Loss-of-Function Screens Reveal ABCE1 as an Essential Cellular Host Factor for Efficient Translation of <i>Paramyxoviridae</i> and <i>Pneumoviridae</i> . MBio, 2019, 10, .	4.1	24
113	Application of a targeted-enrichment methodology for full-genome sequencing of Dengue 1-4, Chikungunya and Zika viruses directly from patient samples. PLoS Neglected Tropical Diseases, 2019, 13, e0007184.	3.0	15
114	Cell surface α2,3-linked sialic acid facilitates Zika virus internalization. Emerging Microbes and Infections, 2019, 8, 426-437.	6.5	29
115	Enhanced Autophagy Contributes to Reduced Viral Infection in Black Flying Fox Cells. Viruses, 2019, 11, 260.	3.3	34
116	Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea). Viruses, 2019, 11, 250.	3.3	22
117	Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4, 789-799.	13.3	245
118	Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20707-20715.	7.1	39
119	Isolation and Full-Genome Characterization of Nipah Viruses from Bats, Bangladesh. Emerging Infectious Diseases, 2019, 25, 166-170.	4.3	32
120	Serological evidence of human infection by bat orthoreovirus in Singapore. Journal of Medical Virology, 2019, 91, 707-710.	5.0	18
121	Characterization of a filovirus (MÄ>nglà virus) from Rousettus bats in China. Nature Microbiology, 2019, 4, 390-395.	13.3	116
122	Characterization of Teviot virus, an Australian bat-borne paramyxovirus. Journal of General Virology, 2019, 100, 403-413.	2.9	9
123	Detection and characterization of a novel bat-borne coronavirus in Singapore using multiple molecular approaches. Journal of General Virology, 2019, 100, 1363-1374.	2.9	27
124	ICTV Virus Taxonomy Profile: Paramyxoviridae. Journal of General Virology, 2019, 100, 1593-1594.	2.9	194
125	Dampened STING-Dependent Interferon Activation in Bats. Cell Host and Microbe, 2018, 23, 297-301.e4.	11.0	206
126	Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China. Virologica Sinica, 2018, 33, 104-107.	3.0	219

#	Article	IF	CITATIONS
127	Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556, 255-258.	27.8	565
128	Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity. Molecular Biology and Evolution, 2018, 35, 1626-1637.	8.9	59
129	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	2.1	153
130	Nipah Virus Infection. Journal of Clinical Microbiology, 2018, 56, .	3.9	162
131	Zika virus infection elicits auto-antibodies to C1q. Scientific Reports, 2018, 8, 1882.	3.3	21
132	Problems of classification in the family Paramyxoviridae. Archives of Virology, 2018, 163, 1395-1404.	2.1	30
133	Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virology Journal, 2018, 15, 56.	3.4	24
134	Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Scientific Reports, 2018, 8, 4726.	3.3	11
135	Alston Virus, a Novel Paramyxovirus Isolated from Bats Causes Upper Respiratory Tract Infection in Experimentally Challenged Ferrets. Viruses, 2018, 10, 675.	3.3	13
136	Genetic Evidence of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) and Widespread Seroprevalence among Camels in Kenya. Virologica Sinica, 2018, 33, 484-492.	3.0	42
137	Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing. GigaScience, 2018, 7, .	6.4	33
138	Serologic Evidence of Fruit Bat Exposure to Filoviruses, Singapore, 2011–2016. Emerging Infectious Diseases, 2018, 24, 114-117.	4.3	44
139	Serological Cross Reactivity between Zika and Dengue Viruses in Experimentally Infected Monkeys. Virologica Sinica, 2018, 33, 378-381.	3.0	4
140	Viral regulation of host cell biology by hijacking of the nucleolar DNA-damage response. Nature Communications, 2018, 9, 3057.	12.8	32
141	Animal infection studies of two recently discovered African bat paramyxoviruses, Achimota 1 and Achimota 2. Scientific Reports, 2018, 8, 12744.	3.3	9
142	Hervey virus: Study on co-circulation with Henipaviruses in Pteropid bats within their distribution range from Australia to Africa. PLoS ONE, 2018, 13, e0191933.	2.5	5
143	The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. Journal of Immunology, 2018, 200, 209-217.	0.8	73
144	An accelerated rabies vaccine schedule based on toll-like receptor 3 (TLR3) agonist PIKA adjuvant augments rabies virus specific antibody and T cell response in healthy adult volunteers. Vaccine, 2017, 35, 1175-1183.	3.8	29

#	Article	IF	CITATIONS
145	Editorial overview: Intraspecies transmission of viruses: Human-to-human transmission. Current Opinion in Virology, 2017, 22, v-vii.	5.4	1
146	Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.	2.1	173
147	Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto. BMC Genomics, 2017, 18, 388.	2.8	22
148	Circulating microRNA profiles of Hendra virus infection in horses. Scientific Reports, 2017, 7, 7431.	3.3	15
149	A phase II randomized study to determine the safety and immunogenicity of the novel PIKA rabies vaccine containing the PIKA adjuvant using an accelerated regimen. Vaccine, 2017, 35, 7127-7132.	3.8	30
150	A Functional Genomics Approach to Henipavirus Research: The Role of Nuclear Proteins, MicroRNAs and Immune Regulators in Infection and Disease. Current Topics in Microbiology and Immunology, 2017, 419, 191-213.	1.1	5
151	Genetically Diverse Filoviruses in <i>Rousettus</i> and <i>Eonycteris</i> spp. Bats, China, 2009 and 2015. Emerging Infectious Diseases, 2017, 23, 482-486.	4.3	64
152	IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS ONE, 2017, 12, e0182866.	2.5	30
153	Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 2017, 13, e1006698.	4.7	797
154	ICTV Virus Taxonomy Profile: Pneumoviridae. Journal of General Virology, 2017, 98, 2912-2913.	2.9	215
155	Nuclear localization and secretion competence are conserved among henipavirus matrix proteins. Journal of General Virology, 2017, 98, 563-576.	2.9	16
156	Genetically Diverse Filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerging Infectious Diseases, 2017, 23, 482-486.	4.3	1
157	The equine Hendra virus vaccine remains a highly effective preventative measure against infection in horses and humans: †The imperative to develop a human vaccine for the Hendra virus in Australia'. Infection Ecology and Epidemiology, 2016, 6, 31658.	0.8	6
158	Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus. Emerging Infectious Diseases, 2016, 22, 1071-1074.	4.3	53
159	The Nature of Exposure Drives Transmission of Nipah Viruses from Malaysia and Bangladesh in Ferrets. PLoS Neglected Tropical Diseases, 2016, 10, e0004775.	3.0	32
160	Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion. PLoS Pathogens, 2016, 12, e1005974.	4.7	15
161	Unique Loss of the PYHIN Gene Family in Bats Amongst Mammals: Implications for Inflammasome Sensing. Scientific Reports, 2016, 6, 21722.	3.3	113
162	Evolution and comparative analysis of the bat MHC-I region. Scientific Reports, 2016, 6, 21256.	3.3	56

#	Article	IF	CITATIONS
163	Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Scientific Reports, 2016, 6, 38597.	3.3	33
164	Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Scientific Reports, 2016, 6, 37796.	3.3	51
165	Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule. Journal of Immunology, 2016, 196, 4468-4476.	0.8	30
166	Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.	2.1	407
167	Co-circulation of H5N6, H3N2, H3N8 and Emergence of Novel Reassortant H3N6 in a Local Community in Hunan Province in China. Scientific Reports, 2016, 6, 25549.	3.3	21
168	The Role of Bats as Reservoir Hosts of Emerging Neuroviruses. , 2016, , 403-454.		3
169	Virology Journal Reviewer Acknowledgement 2015. Virology Journal, 2016, 13, .	3.4	0
170	Contraction of the type I IFN locus and unusual constitutive expression of <i>IFN-α</i> in bats. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2696-2701.	7.1	272
171	Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2016, 90, 3253-3256.	3.4	221
172	The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus. Journal of General Virology, 2016, 97, 581-592.	2.9	21
173	Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathogens, 2016, 12, e1005478.	4.7	38
174	Bats and Rodents Shape Mammalian Retroviral Phylogeny. Scientific Reports, 2015, 5, 16561.	3.3	31
175	Cloning, expression, and antiviral activity of interferon β from the Chinese microbat, Myotis davidii. Virologica Sinica, 2015, 30, 425-432.	3.0	7
176	Molecular evidence of Ebola Reston virus infection in Philippine bats. Virology Journal, 2015, 12, 107.	3.4	71
177	Bat origin of human coronaviruses. Virology Journal, 2015, 12, 221.	3.4	330
178	<i>Pteropine orthoreovirus</i> infection among out-patients with acute upper respiratory tract infection in Malaysia. Journal of Medical Virology, 2015, 87, 2149-2153.	5.0	24
179	Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses, 2015, 7, 5792-5800.	3.3	10
180	Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes. Frontiers in Microbiology, 2015, 6, 886.	3.5	29

#	Article	IF	CITATIONS
181	Absence of MERS-CoV antibodies in feral camels in Australia: Implications for the pathogen's origin and spread. One Health, 2015, 1, 76-82.	3.4	37
182	The non-pathogenic Henipavirus Cedar paramyxovirus phosphoprotein has a compromised ability to target STAT1 and STAT2. Antiviral Research, 2015, 124, 69-76.	4.1	22
183	Isolation of multiple novel paramyxoviruses from pteropid bat urine. Journal of General Virology, 2015, 96, 24-29.	2.9	43
184	Development of multiplexed bead arrays for the simultaneous detection of nucleic acid from multiple viruses in bat samples. Journal of Virological Methods, 2015, 223, 5-12.	2.1	14
185	Complete Genome Sequence of Teviot Paramyxovirus, a Novel Rubulavirus Isolated from Fruit Bats in Australia. Genome Announcements, 2015, 3, .	0.8	10
186	A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. Journal of Virological Methods, 2015, 222, 170-177.	2.1	13
187	Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142124.	2.6	375
188	Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host. PLoS ONE, 2015, 10, e0115736.	2.5	13
189	Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly. PLoS Pathogens, 2015, 11, e1005322.	4.7	59
190	Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats. ELife, 2015, 4, .	6.0	110
191	Hendra Virus Vaccine, a One Health Approach to Protecting Horse, Human, and Environmental Health. Emerging Infectious Diseases, 2014, 20, 372-9.	4.3	159
192	Novel Phlebovirus with Zoonotic Potential Isolated from Ticks, Australia. Emerging Infectious Diseases, 2014, 20, 1040-1043.	4.3	76
193	Detailed morphological characterisation of Hendra virus infection of different cell types using super-resolution and conventional imaging. Virology Journal, 2014, 11, 200.	3.4	20
194	Serological Evidence of Henipavirus Exposure in Cattle, Goats and Pigs in Bangladesh. PLoS Neglected Tropical Diseases, 2014, 8, e3302.	3.0	57
195	Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biology, 2014, 15, 532.	8.8	42
196	Sensory Rewiring in an Echolocator: Genome-Wide Modification of Retinogenic and Auditory Genes in the Bat <i>Myotis davidii</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1825-1835.	1.8	5
197	Henipaviruses. , 2014, , 125-142.		0
198	Aligning bona fide dendritic cell populations across species. Cellular Immunology, 2014, 291, 3-10.	3.0	72

#	Article	IF	CITATIONS
199	Characterisation of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics, 2014, 15, 682.	2.8	28
200	Subclinical infection without encephalitis in mice following intranasal exposure to Nipah virus-Malaysia and Nipah virus-Bangladesh. Virology Journal, 2014, 11, 102.	3.4	32
201	Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5. Virology Journal, 2014, 11, 40.	3.4	26
202	Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL mediated apoptosis. Genome Biology, 2014, 15, 532.	9.6	30
203	IRF7 in the Australian Black Flying Fox, Pteropus alecto: Evidence for a Unique Expression Pattern and Functional Conservation. PLoS ONE, 2014, 9, e103875.	2.5	51
204	Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. Retrovirology, 2013, 10, 35.	2.0	45
205	Recombinant Hendra viruses expressing a reporter gene retain pathogenicity in ferrets. Virology Journal, 2013, 10, 95.	3.4	29
206	Identification of immunogenic determinants of the spike protein of SARS-like coronavirus. Virologica Sinica, 2013, 28, 92-96.	3.0	7
207	Use of cross-reactive serological assays for detecting novel pathogens in wildlife: Assessing an appropriate cutoff for henipavirus assays in African bats. Journal of Virological Methods, 2013, 193, 295-303.	2.1	50
208	Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection. Developmental and Comparative Immunology, 2013, 40, 240-247.	2.3	41
209	Studying immunity to zoonotic diseases in the natural host — keeping it real. Nature Reviews Immunology, 2013, 13, 851-861.	22.7	82
210	Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503, 535-538.	27.8	1,439
211	Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nature Communications, 2013, 4, 2770.	12.8	105
212	Comparative Analysis of Bat Genomes Provides Insight into the Evolution of Flight and Immunity. Science, 2013, 339, 456-460.	12.6	522
213	Host cell tropism mediated by Australian bat lyssavirus envelope glycoproteins. Virology, 2013, 444, 21-30.	2.4	10
214	Zoonotic henipavirus transmission. Journal of Clinical Virology, 2013, 58, 354-356.	3.1	5
215	A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Research, 2013, 100, 8-13.	4.1	111
216	Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology, 2013, 441, 95-106.	2.4	121

#	Article	IF	CITATIONS
217	Potent Inhibition of Hendra Virus Infection via RNA Interference and Poly I:C Immune Activation. PLoS ONE, 2013, 8, e64360.	2.5	10
218	Bats and their virome: an important source of emerging viruses capable of infecting humans. Current Opinion in Virology, 2013, 3, 84-91.	5.4	235
219	Novel, Potentially Zoonotic Paramyxoviruses from the African Straw-Colored Fruit Bat Eidolon helvum. Journal of Virology, 2013, 87, 1348-1358.	3.4	75
220	Ebola Virus Antibodies in Fruit Bats, Bangladesh. Emerging Infectious Diseases, 2013, 19, 270-273.	4.3	129
221	Bats and Viruses: Friend or Foe?. PLoS Pathogens, 2013, 9, e1003651.	4.7	65
222	The L Gene of J Paramyxovirus Plays a Critical Role in Viral Pathogenesis. Journal of Virology, 2013, 87, 12990-12998.	3.4	12
223	Deep RNA Sequencing Reveals Complex Transcriptional Landscape of a Bat Adenovirus. Journal of Virology, 2013, 87, 503-511.	3.4	15
224	Bat cells from <i><scp>P</scp>teropus alecto</i> are susceptible to influenza <scp>A</scp> virus infection and reassortment. Influenza and Other Respiratory Viruses, 2013, 7, 900-903.	3.4	22
225	Promotion of Hendra Virus Replication by MicroRNA 146a. Journal of Virology, 2013, 87, 3782-3791.	3.4	54
226	Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virology Journal, 2013, 10, 304.	3.4	47
227	The Distribution of Henipaviruses in Southeast Asia and Australasia: Is Wallace's Line a Barrier to Nipah Virus?. PLoS ONE, 2013, 8, e61316.	2.5	48
228	Duration of Maternal Antibodies against Canine Distemper Virus and Hendra Virus in Pteropid Bats. PLoS ONE, 2013, 8, e67584.	2.5	37
229	Cedar Virus: A Novel Henipavirus Isolated from Australian Bats. PLoS Pathogens, 2012, 8, e1002836.	4.7	245
230	Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. Journal of General Virology, 2012, 93, 275-281.	2.9	27
231	Diagnosis of Henipavirus Infection: Current Capabilities and Future Directions. Current Topics in Microbiology and Immunology, 2012, 359, 179-196.	1.1	27
232	Biochemical, Conformational, and Immunogenic Analysis of Soluble Trimeric Forms of Henipavirus Fusion Glycoproteins. Journal of Virology, 2012, 86, 11457-11471.	3.4	54
233	Ecological Aspects of Hendra Virus. Current Topics in Microbiology and Immunology, 2012, 359, 11-23.	1.1	48
234	Discovery of Retroviral Homologs in Bats: Implications for the Origin of Mammalian Gammaretroviruses. Journal of Virology, 2012, 86, 4288-4293.	3.4	52

#	Article	IF	CITATIONS
235	A Novel Bat Herpesvirus Encodes Homologues of Major Histocompatibility Complex Classes I and II, C-Type Lectin, and a Unique Family of Immune-Related Genes. Journal of Virology, 2012, 86, 8014-8030.	3.4	39
236	Hendra and Nipah viruses: why are they so deadly?. Current Opinion in Virology, 2012, 2, 242-247.	5.4	74
237	Antigen capture ELISA system for henipaviruses using polyclonal antibodies obtained by DNA immunization. Archives of Virology, 2012, 157, 1605-1609.	2.1	14
238	Hendra virus: an emerging paramyxovirus in Australia. Lancet Infectious Diseases, The, 2012, 12, 799-807.	9.1	104
239	Immunization Strategies Against Henipaviruses. Current Topics in Microbiology and Immunology, 2012, 359, 197-223.	1.1	23
240	Cloning, expression and antiviral activity of IFNÎ ³ from the Australian fruit bat, Pteropus alecto. Developmental and Comparative Immunology, 2012, 36, 610-618.	2.3	25
241	Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Developmental and Comparative Immunology, 2012, 36, 657-664.	2.3	51
242	The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics, 2012, 13, 261.	2.8	104
243	Serological evidence of ebolavirus infection in bats, China. Virology Journal, 2012, 9, 236.	3.4	91
244	Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. Journal of General Virology, 2012, 93, 2037-2045.	2.9	48
245	Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs. Journal of General Virology, 2012, 93, 2590-2594.	2.9	53
246	Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats. PLoS ONE, 2012, 7, e30346.	2.5	71
247	A New Model for Hendra Virus Encephalitis in the Mouse. PLoS ONE, 2012, 7, e40308.	2.5	55
248	Transmission Routes for Nipah Virus from Malaysia and Bangladesh. Emerging Infectious Diseases, 2012, 18, 1983-1993.	4.3	85
249	Cygnet River Virus, a Novel Orthomyxovirus from Ducks, Australia. Emerging Infectious Diseases, 2012, 18, 2044-2046.	4.3	10
250	Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: Sensitive and high-throughput analysis utilizing secreted alkaline phosphatase. Journal of Virological Methods, 2012, 179, 226-232.	2.1	39
251	Novel Paramyxoviruses in Free-Ranging European Bats. PLoS ONE, 2012, 7, e38688.	2.5	61
252	Ebola Virus Antibodies in Fruit Bats, Ghana, West Africa. Emerging Infectious Diseases, 2012, 18, 1207-1209.	4.3	126

#	Article	IF	CITATIONS
253	Bats as a source of emerging zoonotic diseases – the interface with wildlife. Microbiology Australia, 2012, 33, 150.	0.4	0
254	Evolution of SARS Coronavirus and the Relevance of Modern Molecular Epidemiology. , 2011, , 711-728.		5
255	Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Developmental and Comparative Immunology, 2011, 35, 7-18.	2.3	63
256	A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine, 2011, 29, 5623-5630.	3.8	140
257	Mass extinctions, biodiversity and mitochondrial function: are bats â€~special' as reservoirs for emerging viruses?. Current Opinion in Virology, 2011, 1, 649-657.	5.4	163
258	Vaccine Potential of Nipah Virus-Like Particles. PLoS ONE, 2011, 6, e18437.	2.5	58
259	Antibodies to Henipavirus or Henipa-Like Viruses in Domestic Pigs in Ghana, West Africa. PLoS ONE, 2011, 6, e25256.	2.5	72
260	Identifying Hendra Virus Diversity in Pteropid Bats. PLoS ONE, 2011, 6, e25275.	2.5	88
261	Type III IFN Receptor Expression and Functional Characterisation in the Pteropid Bat, Pteropus alecto. PLoS ONE, 2011, 6, e25385.	2.5	40
262	Investigation of a Potential Zoonotic Transmission of Orthoreovirus Associated with Acute Influenza-Like Illness in an Adult Patient. PLoS ONE, 2011, 6, e25434.	2.5	78
263	Saffold Virus Infection in Children, Malaysia, 2009. Emerging Infectious Diseases, 2011, 17, 1562-4.	4.3	17
264	Experimental Infection of Horses with Hendra Virus/Australia/Horse/2008/Redlands. Emerging Infectious Diseases, 2011, 17, 2232-8.	4.3	71
265	Interferon Signaling Remains Functional during Henipavirus Infection of Human Cell Lines. Journal of Virology, 2011, 85, 4031-4034.	3.4	43
266	Evolutionary relationship of the L- and M-class genome segments of bat-borne fusogenic orthoreoviruses in Malaysia and Australia. Journal of General Virology, 2011, 92, 2930-2936.	2.9	27
267	Mutations in the G–H loop region of ephrin-B2 can enhance Nipah virus binding and infection. Journal of General Virology, 2011, 92, 2142-2152.	2.9	14
268	Ebola Reston Virus Infection of Pigs: Clinical Significance and Transmission Potential. Journal of Infectious Diseases, 2011, 204, S804-S809.	4.0	104
269	Type III IFNs in Pteropid Bats: Differential Expression Patterns Provide Evidence for Distinct Roles in Antiviral Immunity. Journal of Immunology, 2011, 186, 3138-3147.	0.8	90
270	Interferon Production and Signaling Pathways Are Antagonized during Henipavirus Infection of Fruit Bat Cell Lines. PLoS ONE, 2011, 6, e22488.	2.5	64

#	Article	IF	CITATIONS
271	Henipavirus. , 2011, , 1119-1125.		Ο
272	Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire. Immunogenetics, 2010, 62, 173-184.	2.4	68
273	Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Archives of Virology, 2010, 155, 1563-1569.	2.1	76
274	Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology, 2010, 402, 26-40.	2.4	56
275	Identification of key amino acid residues required for horseshoe bat angiotensin-I converting enzyme 2 to function as a receptor for severe acute respiratory syndrome coronavirus. Journal of General Virology, 2010, 91, 1708-1712.	2.9	7
276	Prevalence and genetic diversity of adeno-associated viruses in bats from China. Journal of General Virology, 2010, 91, 2601-2609.	2.9	32
277	Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs, 2010, 2, 53-66.	5.2	114
278	Genome Sequence Conservation of Hendra Virus Isolates during Spillover to Horses, Australia. Emerging Infectious Diseases, 2010, 16, 1767-1769.	4.3	47
279	Prevalence of Henipavirus and Rubulavirus Antibodies in Pteropid Bats, Papua New Guinea. Emerging Infectious Diseases, 2010, 16, 1997-1999.	4.3	47
280	Host Range, Prevalence, and Genetic Diversity of Adenoviruses in Bats. Journal of Virology, 2010, 84, 3889-3897.	3.4	118
281	Development of an Acute and Highly Pathogenic Nonhuman Primate Model of Nipah Virus Infection. PLoS ONE, 2010, 5, e10690.	2.5	145
282	Long-Term Survival of an Urban Fruit Bat Seropositive for Ebola and Lagos Bat Viruses. PLoS ONE, 2010, 5, e11978.	2.5	132
283	Paramyxoviruses infecting humans: the old, the new and the unknown. Future Microbiology, 2009, 4, 537-554.	2.0	26
284	Chloroquine Administration Does Not Prevent Nipah Virus Infection and Disease in Ferrets. Journal of Virology, 2009, 83, 11979-11982.	3.4	95
285	A Neutralizing Human Monoclonal Antibody Protects against Lethal Disease in a New Ferret Model of Acute Nipah Virus Infection. PLoS Pathogens, 2009, 5, e1000642.	4.7	251
286	A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular stomatitis virus expressing green fluorescent protein. Journal of Virological Methods, 2009, 160, 7-13.	2.1	55
287	Differential stepwise evolution of SARS coronavirus functional proteins in different host species. BMC Evolutionary Biology, 2009, 9, 52.	3.2	42
288	Bats and viruses: a brief review. Virologica Sinica, 2009, 24, 93-99.	3.0	12

#	Article	IF	CITATIONS
289	Immunogenicity difference between the SARS coronavirus and the bat SARS-like coronavirus spike (S) proteins. Biochemical and Biophysical Research Communications, 2009, 387, 326-329.	2.1	5
290	Establishment, Immortalisation and Characterisation of Pteropid Bat Cell Lines. PLoS ONE, 2009, 4, e8266.	2.5	143
291	Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology, 2008, 372, 357-371.	2.4	95
292	Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species. Journal of Immunological Methods, 2008, 331, 1-12.	1.4	32
293	The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virology Journal, 2008, 5, 137.	3.4	63
294	A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine, 2008, 26, 3842-3852.	3.8	101
295	Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function. Biochemical and Biophysical Research Communications, 2008, 374, 138-142.	2.1	20
296	Difference in Receptor Usage between Severe Acute Respiratory Syndrome (SARS) Coronavirus and SARS-Like Coronavirus of Bat Origin. Journal of Virology, 2008, 82, 1899-1907.	3.4	145
297	Tioman Virus, a Paramyxovirus of Bat Origin, Causes Mild Disease in Pigs and Has a Predilection for Lymphoid Tissues. Journal of Virology, 2008, 82, 565-568.	3.4	42
298	Residues in the Stalk Domain of the Hendra Virus G Glycoprotein Modulate Conformational Changes Associated with Receptor Binding. Journal of Virology, 2008, 82, 11398-11409.	3.4	74
299	Exceptionally Potent Cross-Reactive Neutralization of Nipah and Hendra Viruses by a Human Monoclonal Antibody. Journal of Infectious Diseases, 2008, 197, 846-853.	4.0	144
300	Antibodies to Nipah or Nipah-like Viruses in Bats, China. Emerging Infectious Diseases, 2008, 14, 1974-1976.	4.3	108
301	Disease Outbreaks Caused by Emerging Paramyxoviruses of Bat Origin. , 2008, , 193-208.		2
302	Evidence of Henipavirus Infection in West African Fruit Bats. PLoS ONE, 2008, 3, e2739.	2.5	215
303	Identification and Characterization of a New Orthoreovirus from Patients with Acute Respiratory Infections. PLoS ONE, 2008, 3, e3803.	2.5	116
304	Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12123-12128.	7.1	276
305	A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11424-11429.	7.1	201
306	Emerging Viruses: Coming in on a Wrinkled Wing and a Prayer. Clinical Infectious Diseases, 2007, 44, 711-717.	5.8	94

#	Article	IF	CITATIONS
307	Serological Evidence of Possible Human Infection with <i>Tioman virus,</i> a Newly Described Paramyxovirus of Bat Origin. Journal of Infectious Diseases, 2007, 196, 884-886.	4.0	46
308	In Utero Transmission of Nipah Virus: Role Played by Pregnancy and Vertical Transmission in Henipavirus Epidemiology. Journal of Infectious Diseases, 2007, 196, 807-809.	4.0	5
309	Identification of Hendra Virus G Glycoprotein Residues That Are Critical for Receptor Binding. Journal of Virology, 2007, 81, 5893-5901.	3.4	84
310	Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae. Virus Research, 2007, 124, 95-102.	2.2	24
311	Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virology Journal, 2007, 4, 1.	3.4	159
312	Evolutionary Relationships between Bat Coronaviruses and Their Hosts. Emerging Infectious Diseases, 2007, 13, 1526-1532.	4.3	123
313	Duration of Antibody Responses after Severe Acute Respiratory Syndrome. Emerging Infectious Diseases, 2007, 13, 1562-1564.	4.3	381
314	Neutralization assays for differential henipavirus serology using Bio-Plex Protein Array Systems. Journal of Virological Methods, 2007, 142, 29-40.	2.1	121
315	Tioman virus infection in experimentally infected mouse brain and its association with apoptosis. Journal of Virological Methods, 2007, 143, 140-146.	2.1	7
316	Review of Bats and SARS. Emerging Infectious Diseases, 2006, 12, 1834-1840.	4.3	375
317	Hendra and Nipah viruses: different and dangerous. Nature Reviews Microbiology, 2006, 4, 23-35.	28.6	350
318	Beilong virus, a novel paramyxovirus with the largest genome of non-segmented negative-stranded RNA viruses. Virology, 2006, 346, 219-228.	2.4	94
319	A comparative indirect ELISA for the detection of henipavirus antibodies based on a recombinant nucleocapsid protein expressed in Escherichia coli. Journal of Virological Methods, 2006, 136, 273-276.	2.1	31
320	Feline Model of Acute Nipah Virus Infection and Protection with a Soluble Glycoprotein-Based Subunit Vaccine. Journal of Virology, 2006, 80, 12293-12302.	3.4	166
321	Potent Neutralization of Hendra and Nipah Viruses by Human Monoclonal Antibodies. Journal of Virology, 2006, 80, 891-899.	3.4	155
322	Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. Journal of General Virology, 2006, 87, 3355-3359.	2.9	96
323	A single amino acid substitution in the V protein of Nipah virus alters its ability to block interferon signalling in cells from different species. Journal of General Virology, 2006, 87, 3649-3653.	2.9	40
324	Improved rapid amplification of cDNA ends (RACE) for mapping both the 5′ and 3′ terminal sequences of paramyxovirus genomes. Journal of Virological Methods, 2005, 130, 154-156.	2.1	91

#	Article	IF	CITATIONS
325	Hendra and Nipah Viruses: Pathogenesis and Therapeutics. Current Molecular Medicine, 2005, 5, 805-816.	1.3	49
326	Civets Are Equally Susceptible to Experimental Infection by Two Different Severe Acute Respiratory Syndrome Coronavirus Isolates. Journal of Virology, 2005, 79, 2620-2625.	3.4	117
327	Receptor Binding, Fusion Inhibition, and Induction of Cross-Reactive Neutralizing Antibodies by a Soluble G Glycoprotein of Hendra Virus. Journal of Virology, 2005, 79, 6690-6702.	3.4	157
328	Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science, 2005, 310, 676-679.	12.6	2,130
329	Location of, immunogenicity of and relationships between neutralization epitopes on the attachment protein (C) of Hendra virus. Journal of General Virology, 2005, 86, 2839-2848.	2.9	29
330	The Complete Genome Sequence of J Virus Reveals a Unique Genome Structure in the Family <i>Paramyxoviridae</i> . Journal of Virology, 2005, 79, 10690-10700.	3.4	78
331	From The Cover: Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10652-10657.	7.1	395
332	Inhibition of Henipavirus fusion and infection by heptad-derived peptides of the Nipah virus fusion glycoprotein. Virology Journal, 2005, 2, 57.	3.4	71
333	Antibodies to SARS Coronavirus in Civets. Emerging Infectious Diseases, 2004, 10, 2244-2248.	4.3	192
334	Full-length genome sequence of Mossman virus, a novel paramyxovirus isolated from rodents in Australia. Virology, 2003, 317, 330-344.	2.4	60
335	Hendra Virus V Protein Inhibits Interferon Signaling by Preventing STAT1 and STAT2 Nuclear Accumulation. Journal of Virology, 2003, 77, 11842-11845.	3.4	140
336	Membrane Fusion Tropism and Heterotypic Functional Activities of the Nipah Virus and Hendra Virus Envelope Glycoproteins. Journal of Virology, 2002, 76, 11186-11198.	3.4	142
337	A rapid immune plaque assay for the detection of Hendra and Nipah viruses and anti-virus antibodies. Journal of Virological Methods, 2002, 99, 41-51.	2.1	51
338	Molecular biology of Hendra and Nipah viruses. Microbes and Infection, 2001, 3, 279-287.	1.9	259
339	Tioman Virus, a Novel Paramyxovirus Isolated from Fruit Bats in Malaysia. Virology, 2001, 283, 215-229.	2.4	134
340	Molecular Characterization of Menangle Virus, a Novel Paramyxovirus which Infects Pigs, Fruit Bats, and Humans. Virology, 2001, 283, 358-373.	2.4	76
341	Functional Expression and Membrane Fusion Tropism of the Envelope Glycoproteins of Hendra Virus. Virology, 2001, 290, 121-135.	2.4	94
342	The Exceptionally Large Genome of Hendra Virus: Support for Creation of a New Genus within the FamilyParamyxoviridae. Journal of Virology, 2000, 74, 9972-9979.	3.4	249

#	Article	IF	CITATIONS
343	The cleavage activation and sites of glycosylation in the fusion protein of Hendra virus. Virus Research, 2000, 69, 83-93.	2.2	43
344	Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. Journal of General Virology, 2000, 81, 2471-2480.	2.9	78
345	The Attachment Protein of Hendra Virus Has High Structural Similarity but Limited Primary Sequence Homology Compared with Viruses in the GenusParamyxovirus. Virology, 1998, 251, 227-233.	2.4	65
346	A Novel P/V/C Gene in a New Member of the <i>Paramyxoviridae</i> Family, Which Causes Lethal Infection in Humans, Horses, and Other Animals. Journal of Virology, 1998, 72, 1482-1490.	3.4	113
347	BTag: A novel six-residue epitope tag for surveillance and purification of recombinant proteins. Gene, 1996, 169, 53-58.	2.2	31
348	Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. Journal of Immunological Methods, 1995, 178, 1-12.	1.4	86
349	The role of bats as reservoir hosts of emerging neurological viruses. , 0, , 382-406.		4
350	Flying Foxes, Horses, and Humans: a Zoonosis Caused by a New Member of the Paramyxoviridae. , 0, , 43-58.		23
351	Zoonotic Paramyxoviruses. , 0, , 949-966.		2
352	Association of SARS-CoV-2 Clades with Clinical, Inflammatory and Virologic Outcomes: An Observational Study. SSRN Electronic Journal, 0, , .	0.4	0