
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moonlighting in drug metabolism. Drug Metabolism Reviews, 2021, 53, 76-99.	3.6	3
2	Glutathione transferase Omega 1 confers protection against azoxymethane-induced colorectal tumour formation. Carcinogenesis, 2021, 42, 853-863.	2.8	4
3	A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants, 2021, 10, 549.	5.1	23
4	Impact of Serum ^ĵ 3-Glutamyltransferase on Overall Survival in Men with Metastatic Castration-Resistant Prostate Cancer Treated with Docetaxel. Cancers, 2021, 13, 5587.	3.7	1
5	The Antiviral Drug Efavirenz in Breast Cancer Stem Cell Therapy. Cancers, 2021, 13, 6232.	3.7	Ο
6	Impact of Serum Î ³ -Glutamyltransferase on Overall Survival in Patients with Metastatic Renal Cell Carcinoma in the Era of Targeted Therapy. Targeted Oncology, 2020, 15, 347-356.	3.6	9
7	Development of Benzenesulfonamide Derivatives as Potent Glutathione Transferase Omega-1 Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 2894-2914.	6.4	12
8	CSTO1â€1 is an upstream suppressor of M2 macrophage skewing and HIFâ€1αâ€induced eosinophilic airway inflammation. Clinical and Experimental Allergy, 2020, 50, 609-624.	2.9	17
9	Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7 Deglutathionylation. Cell Reports, 2019, 29, 151-161.e5.	6.4	58
10	CHAC1 overexpression in human gastric parietal cells with Helicobacter pylori infection in the secretory canaliculi. Helicobacter, 2019, 24, e12598.	3.5	13
11	<i>Helicobacter pylori</i> induces somatic mutations in <i><scp>TP</scp>53</i> via overexpression of <scp>CHAC</scp> 1 in infected gastric epithelial cells. FEBS Open Bio, 2018, 8, 671-679.	2.3	25
12	Reviewing Hit Discovery Literature for Difficult Targets: Glutathione Transferase Omega-1 as an Example. Journal of Medicinal Chemistry, 2018, 61, 7448-7470.	6.4	14
13	Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina. , 2018, 59, 4362.		8
14	Structural and biophysical analyses of the skeletal dihydropyridine receptor β subunit β1a reveal critical roles of domain interactions for stability. Journal of Biological Chemistry, 2017, 292, 8401-8411.	3.4	7
15	FKBP association with RyR channels: effect of CLIC2 binding on sub-conductance opening and FKBP binding. Journal of Cell Science, 2017, 130, 3588-3600.	2.0	12
16	Solution structure of the TLR adaptor MAL/TIRAP reveals an intact BB loop and supports MAL Cys91 glutathionylation for signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6480-E6489.	7.1	33
17	GSTO1-1 plays a pro-inflammatory role in models of inflammation, colitis and obesity. Scientific Reports, 2017, 7, 17832.	3.3	47
18	Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. Advances in Pharmacology, 2017, 79, 287-324.	2.0	7

#	Article	IF	CITATIONS
19	Testosterone regulation of cyclin E kinase: A key factor in determining gender differences in hepatocarcinogenesis. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1210-1219.	2.8	23
20	Structure, function and disease relevance of Omega-class glutathione transferases. Archives of Toxicology, 2016, 90, 1049-1067.	4.2	54
21	Dichloroacetate Prevents Cisplatin-Induced Nephrotoxicity without Compromising Cisplatin Anticancer Properties. Journal of the American Society of Nephrology: JASN, 2016, 27, 3331-3344.	6.1	47
22	The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes. PLoS ONE, 2016, 11, e0162415.	2.5	7
23	Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skeletal Muscle, 2015, 5, 23.	4.2	6
24	GSTO1-1 modulates metabolism in macrophages activated through the LPS and TLR4 pathway. Journal of Cell Science, 2015, 128, 1982-1990.	2.0	55
25	Glutathione transferase M2 variants inhibit ryanodine receptor function in adult mouse cardiomyocytes. Biochemical Pharmacology, 2015, 97, 269-280.	4.4	8
26	Skeletal muscle excitation–contraction coupling: Who are the dancing partners?. International Journal of Biochemistry and Cell Biology, 2014, 48, 28-38.	2.8	78
27	Glutathione transferase Omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free Radical Biology and Medicine, 2014, 73, 318-327.	2.9	62
28	Î ³ -Clutamylcyclotransferase as a novel immunohistochemical biomarker for the malignancy of esophageal squamous tumors. Human Pathology, 2014, 45, 331-341.	2.0	26
29	The Impact of Nitric Oxide Toxicity on the Evolution of the Glutathione Transferase Superfamily. Journal of Biological Chemistry, 2013, 288, 24936-24947.	3.4	31
30	Glutathione transferases, regulators of cellular metabolism and physiology. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3267-3288.	2.4	317
31	A fluorometric method to quantify protein glutathionylation using glutathione derivatization with 2,3-naphthalenedicarboxaldehyde. Analytical Biochemistry, 2013, 433, 132-136.	2.4	23
32	Characterization of seleniumâ€containing glutathione transferase zeta1–1 with high GPX activity prepared in eukaryotic cells. Journal of Molecular Recognition, 2013, 26, 38-45.	2.1	6
33	A Role for Glutathione Transferase Omega 1 (CSTO1-1) in the Glutathionylation Cycle. Journal of Biological Chemistry, 2013, 288, 25769-25779.	3.4	104
34	Structural Insights into Omega-Class Glutathione Transferases: A Snapshot of Enzyme Reduction and Identification of a Non-Catalytic Ligandin Site. PLoS ONE, 2013, 8, e60324.	2.5	36
35	An X-linked channelopathy with cardiomegaly due to a CLIC2 mutation enhancing ryanodine receptor channel activity. Human Molecular Genetics, 2012, 21, 4497-4507.	2.9	84
36	An αâ€helical Câ€ŧerminal tail segment of the skeletal Lâ€ŧype Ca 2+ channel β 1a subunit activates ryanodine receptor type 1 via a hydrophobic surface. FASEB Journal, 2012, 26, 5049-5059.	0.5	18

#	Article	IF	CITATIONS
37	Widespread Expression of γ-Glutamyl Cyclotransferase Suggests It Is Not a General Tumor Marker. Journal of Histochemistry and Cytochemistry, 2012, 60, 76-86.	2.5	15
38	Prognostic value of LINE-1 retrotransposon expression and its subcellular localization in breast cancer. Breast Cancer Research and Treatment, 2012, 136, 129-142.	2.5	61
39	Reduction of Benzoquinones to Hydroquinones via Spontaneous Reaction with Glutathione and Enzymatic Reaction by <i>S</i> -Glutathionyl-Hydroquinone Reductases. Biochemistry, 2012, 51, 5014-5021.	2.5	25
40	Expression of selenocysteine-containing glutathione S-transferase in eukaryote. Protein Expression and Purification, 2012, 84, 59-63.	1.3	10
41	Structural Insights into the Dehydroascorbate Reductase Activity of Human Omega-Class Glutathione Transferases. Journal of Molecular Biology, 2012, 420, 190-203.	4.2	60
42	A fluorescence-based microtiter plate assay for Î ³ -glutamylcyclotransferase. Analytical Biochemistry, 2012, 420, 177-181.	2.4	11
43	Dichloroacetic acid up-regulates hepatic glutathione synthesis via the induction of glutamate–cysteine ligase. Biochemical Pharmacology, 2012, 83, 427-433.	4.4	8
44	The inhibitory glutathione transferase M2-2 binding site is located in divergent region 3 of the cardiac ryanodine receptor. Biochemical Pharmacology, 2012, 83, 1523-1529.	4.4	10
45	Preface. Drug Metabolism Reviews, 2011, 43, 91-91.	3.6	1
46	Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metabolism Reviews, 2011, 43, 236-252.	3.6	29
47	The β1a Subunit of the Skeletal DHPR Binds to Skeletal RyR1 and Activates the Channel via Its 35-Residue C-Terminal Tail. Biophysical Journal, 2011, 100, 922-930.	0.5	36
48	Glutathione transferase zeta: discovery, polymorphic variants, catalysis, inactivation, and properties of <i>Gstz1</i> ^{â^`/â^`} mice. Drug Metabolism Reviews, 2011, 43, 215-225.	3.6	21
49	3D Mapping of the SPRY2 Domain of RyR1 by Antibody Labeling and Single-Particle cryo-EM. Biophysical Journal, 2011, 100, 188a.	0.5	0
50	GSTM2 C Terminus Reduces Calcium Release Through RyR2 in Spontaneously Contracting and Field Stimulated Ventricular Cardiomyocytes. Biophysical Journal, 2011, 100, 413a.	0.5	0
51	The omega-class glutathione transferases: structure, function, and genetics. Drug Metabolism Reviews, 2011, 43, 226-235.	3.6	89
52	A Structural Basis for Cellular Uptake of GST-Fold Proteins. PLoS ONE, 2011, 6, e17864.	2.5	13
53	3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM. PLoS ONE, 2011, 6, e25813.	2.5	14
54	The elusive role of the SPRY2 domain in RyR1. Channels, 2011, 5, 148-160.	2.8	13

#	Article	IF	CITATIONS
55	Targeting metabolism with arsenic trioxide and dichloroacetate in breast cancer cells. Molecular Cancer, 2011, 10, 142.	19.2	101
56	Glutathione transferase kappa deficiency causes glomerular nephropathy without overt oxidative stress. Laboratory Investigation, 2011, 91, 1572-1583.	3.7	25
57	Cyclization of the Intrinsically Disordered α1S Dihydropyridine Receptor II-III Loop Enhances Secondary Structure and in Vitro Function. Journal of Biological Chemistry, 2011, 286, 22589-22599.	3.4	12
58	Novel Folding and Stability Defects Cause a Deficiency of Human Glutathione Transferase Omega 1. Journal of Biological Chemistry, 2011, 286, 4271-4279.	3.4	24
59	Reversal of the glycolytic phenotype with dichloroacetate in a mouse mammary adenocarcinoma model. Pathology, 2010, 42, S61-S62.	0.6	1
60	S-Glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases. Biochemical Journal, 2010, 428, 419-427.	3.7	37
61	Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Research and Treatment, 2010, 120, 253-260.	2.5	204
62	The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Biochemical Pharmacology, 2010, 80, 381-388.	4.4	13
63	Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D 2 synthase. European Journal of Medicinal Chemistry, 2010, 45, 447-454.	5.5	15
64	ldentification and Characterization of γ-Glutamylamine Cyclotransferase, an Enzyme Responsible for γ-Glutamyl-ϵ-lysine Catabolism. Journal of Biological Chemistry, 2010, 285, 9642-9648.	3.4	33
65	Polymorphisms in the human glutathione transferase Kappa (GSTK1) promoter alter gene expression. Genomics, 2010, 95, 299-305.	2.9	21
66	Dissection of the inhibition of cardiac ryanodine receptors by human glutathione transferase GSTM2-2. Biochemical Pharmacology, 2009, 77, 1181-1193.	4.4	18
67	Phenylalanine-induced leucopenia in genetic and dichloroacetic acid generated deficiency of glutathione transferase Zeta. Biochemical Pharmacology, 2009, 77, 1358-1363.	4.4	13
68	A dihydropyridine receptor α1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. International Journal of Biochemistry and Cell Biology, 2009, 41, 677-686.	2.8	47
69	Transport of glutathione transferase-fold structured proteins into living cells. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 676-685.	2.6	19
70	S-(4-Nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Analytical Biochemistry, 2008, 374, 25-30.	2.4	44
71	Muscle-specific GSTM2-2 on the luminal side of the sarcoplasmic reticulum modifies RyR ion channel activity. International Journal of Biochemistry and Cell Biology, 2008, 40, 1616-1628.	2.8	11
72	A novel selenium-containing glutathione transferase zeta1-1, the activity of which surpasses the level of some native glutathione peroxidases. International Journal of Biochemistry and Cell Biology, 2008, 40, 2090-2097.	2.8	23

#	Article	IF	CITATIONS
73	Deletion of Glu155 causes a deficiency of glutathione transferase Omega 1-1 but does not alter sensitivity to arsenic trioxide and other cytotoxic drugs. International Journal of Biochemistry and Cell Biology, 2008, 40, 2553-2559.	2.8	24
74	Redox Potential and the Response of Cardiac Ryanodine Receptors to CLIC-2, a Member of the Glutathione S-Transferase Structural Family. Antioxidants and Redox Signaling, 2008, 10, 1675-1686.	5.4	32
75	The Identification and Structural Characterization of C7orf24 as γ-Glutamyl Cyclotransferase. Journal of Biological Chemistry, 2008, 283, 22031-22042.	3.4	110
76	Glutathione Transferase P1. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1202-1210.	5.6	29
77	Polymorphism of glutathione transferase Omega 1 in a population exposed to a high environmental arsenic burden. Pharmacogenetics and Genomics, 2008, 18, 1-10.	1.5	40
78	Structure of the Janus Protein Human CLIC2. Journal of Molecular Biology, 2007, 374, 719-731.	4.2	64
79	The use of glutathione transferase-knockout mice as pharmacological and toxicological models. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 421-433.	3.3	22
80	Glutathione Transferase Omega 1 Catalyzes the Reduction ofS-(Phenacyl)glutathiones to Acetophenones. Chemical Research in Toxicology, 2007, 20, 149-154.	3.3	62
81	Glutathione S-transferase omega in the lung and sputum supernatants of COPD patients. Respiratory Research, 2007, 8, 48.	3.6	31
82	Expression, purification, crystallization and preliminary X-ray diffraction analysis of chloride intracellular channel 2 (CLIC2). Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 961-963.	0.7	8
83	The Mu class glutathione transferase is abundant in striated muscle and is an isoform-specific regulator of ryanodine receptor calcium channels. Cell Calcium, 2007, 41, 429-440.	2.4	25
84	Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase. Biochemical and Biophysical Research Communications, 2006, 347, 859-866.	2.1	61
85	STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF INTERACTIONS BETWEEN THE DIHYDROPYRIDINE RECEPTOR II?III LOOP AND THE RYANODINE RECEPTOR. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 1114-1117.	1.9	15
86	Deficiency of Glutathione Transferase Zeta Causes Oxidative Stress and Activation of Antioxidant Response Pathways. Molecular Pharmacology, 2006, 69, 650-657.	2.3	74
87	A class act: The discovery of the Theta class glutathione transferases. Biochemist, 2006, 28, 35-38.	0.5	0
88	Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenetics and Genomics, 2005, 15, 493-501.	1.5	143
89	Catalytic Function and Expression of Glutathione Transferase Zeta. , 2005, , 85-107.		2
90	A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochemical Journal, 2005, 390, 333-343.	3.7	56

#	Article	IF	CITATIONS
91	Letter to the Editor: 1H, 13C and 15N assignments for the II–III loop region of the skeletal dyhydropyridine receptor. Journal of Biomolecular NMR, 2005, 32, 89-90.	2.8	4
92	Nomenclature for Mammalian Soluble Clutathione Transferases. Methods in Enzymology, 2005, 401, 1-8.	1.0	263
93	Characterization of the Omega Class of Glutathione Transferases. Methods in Enzymology, 2005, 401, 78-99.	1.0	188
94	Using Deubiquitylating Enzymes as Research Tools. Methods in Enzymology, 2005, 398, 540-554.	1.0	114
95	Human Glutathione Transferase Zeta. Methods in Enzymology, 2005, 401, 61-77.	1.0	52
96	Binding and Kinetic Mechanisms of the Zeta Class Glutathione Transferase. Journal of Biological Chemistry, 2004, 279, 33336-33342.	3.4	16
97	Glutathione Transferase Zeta-Catalyzed Bioactivation of Dichloroacetic Acid:Â Reaction of Glyoxylate with Amino Acid Nucleophiles. Chemical Research in Toxicology, 2004, 17, 650-662.	3.3	10
98	An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Science, 2004, 13, 1331-1339.	7.6	266
99	CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. International Journal of Biochemistry and Cell Biology, 2004, 36, 1599-1612.	2.8	74
100	Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases. American Journal of Pathology, 2004, 165, 679-693.	3.8	63
101	Functional polymorphism of human glutathione transferase A3. Pharmacogenetics and Genomics, 2004, 14, 657-663.	5.7	19
102	Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochemical Journal, 2004, 379, 541-552.	3.7	89
103	Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics and Genomics, 2003, 13, 131-144.	5.7	162
104	Clarification of the role of key active site residues of glutathione transferase Zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochemical Journal, 2003, 374, 731-737.	3.7	41
105	Immunohistochemical Localization and Activity of Glutathione Transferase Zeta (GSTZ1–1) in Rat Tissues. Drug Metabolism and Disposition, 2002, 30, 616-625.	3.3	29
106	Alphavirus 6K Proteins Form Ion Channels. Journal of Biological Chemistry, 2002, 277, 46923-46931.	3.4	102
107	Ligandin revisited: resolution of the alpha class glutathione transferase gene family. Pharmacogenetics and Genomics, 2002, 12, 275-276.	5.7	5
108	Mass Spectral Characterization of Dichloroacetic Acid-Modified Human Glutathione Transferase Zeta. Chemical Research in Toxicology, 2002, 15, 1387-1397.	3.3	30

#	Article	IF	CITATIONS
109	Kinetics of the Biotransformation of Maleylacetone and Chlorofluoroacetic Acid by Polymorphic Variants of Human Glutathione Transferase Zeta (hGSTZ1-1). Chemical Research in Toxicology, 2002, 15, 957-963.	3.3	12
110	Alkylation and Inactivation of Human Glutathione Transferase Zeta (hGSTZ1-1) by Maleylacetone and Fumarylacetone. Chemical Research in Toxicology, 2002, 15, 707-716.	3.3	25
111	From glutathione transferase to pore in a CLIC. European Biophysics Journal, 2002, 31, 356-364.	2.2	85
112	A Semisynthetic Glutathione Peroxidase with High Catalytic Efficiency. Chemistry and Biology, 2002, 9, 789-794.	6.0	56
113	Identification and characterization of polymorphisms at the HAS alpha1-acid glycoprotein (ORM*) gene locus in Caucasians. Genetics and Molecular Research, 2002, 1, 96-105.	0.2	1
114	Human Monomethylarsonic Acid (MMAV) Reductase Is a Member of the Glutathione-S-transferase Superfamily. Chemical Research in Toxicology, 2001, 14, 1051-1057.	3.3	203
115	Crystal Structure of Maleylacetoacetate Isomerase/Glutathione Transferase Zeta Reveals the Molecular Basis for Its Remarkable Catalytic Promiscuityâ€,‡. Biochemistry, 2001, 40, 1567-1576.	2.5	119
116	Polymorphism of human Alpha class glutathione transferases. Pharmacogenetics and Genomics, 2001, 11, 609-617.	5.7	47
117	CSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. Pharmacogenetics and Cenomics, 2001, 11, 671-678.	5.7	49
118	Dichloromethane mediatedin vivoselection and functional characterization of rat glutathioneS-transferase theta 1-1 variants. FEBS Journal, 2001, 268, 4001-4010.	0.2	4
119	Immunohistochemistry of Omega Class Glutathione S-Transferase in Human Tissues. Journal of Histochemistry and Cytochemistry, 2001, 49, 983-987.	2.5	70
120	The Glutathione Transferase Structural Family Includes a Nuclear Chloride Channel and a Ryanodine Receptor Calcium Release Channel Modulator. Journal of Biological Chemistry, 2001, 276, 3319-3323.	3.4	248
121	Human Glutathione Transferase T2-2 Discloses Some Evolutionary Strategies for Optimization of the Catalytic Activity of Glutathione Transferases. Journal of Biological Chemistry, 2001, 276, 5432-5437.	3.4	11
122	Identification of the Apical Membrane-targeting Signal of the Multidrug Resistance-associated Protein 2 (MRP2/cMOAT). Journal of Biological Chemistry, 2001, 276, 20876-20881.	3.4	54
123	Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics and Genomics, 2000, 10, 49-57.	5.7	101
124	Database Analysis and Gene Discovery in Pharmacogenetics. Clinical Chemistry and Laboratory Medicine, 2000, 38, 863-7.	2.3	5
125	Identification, Characterization, and Crystal Structure of the Omega Class Glutathione Transferases. Journal of Biological Chemistry, 2000, 275, 24798-24806.	3.4	625
126	Polymorphism- and Species-Dependent Inactivation of Glutathione Transferase Zeta by Dichloroacetate. Chemical Research in Toxicology, 2000, 13, 231-236.	3.3	88

#	Article	IF	CITATIONS
127	Identification of a new mutation (Gly420Ser), distal to the active site, that leads to factor XIII deficiency. European Journal of Haematology, 2000, 65, 279-284.	2.2	6
128	Identification and characterization of two missense mutations causing factor XIIIA deficiency. British Journal of Haematology, 1999, 104, 37-43.	2.5	18
129	Inactivation of Glutathione Transferase Zeta by Dichloroacetic Acid and Other Fluorine-Lacking α-Haloalkanoic Acids. Chemical Research in Toxicology, 1999, 12, 1144-1149.	3.3	67
130	Clutathione Transferase Zeta-Catalyzed Biotransformation of Deuterated Dihaloacetic Acids. Biochemical and Biophysical Research Communications, 1999, 261, 779-783.	2.1	12
131	Proton release on binding of glutathione to Alpha, Mu and Delta class glutathione transferases. Biochemical Journal, 1999, 344, 419-425.	3.7	54
132	Gene structure, expression and chromosomal localization of murine Theta class glutathione transferase mGSTT1-1. Biochemical Journal, 1999, 337, 141-151.	3.7	35
133	Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure, 1998, 6, 309-322.	3.3	147
134	Preliminary X-ray crystallographic studies of a newly defined human theta-class glutathione transferase. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 148-150.	2.5	4
135	Parkinson's disease, pesticides, and glutathione transferase polymorphisms. Lancet, The, 1998, 352, 1344-1346.	13.7	303
136	Glutathione Transferase Zeta-Catalyzed Biotransformation of Dichloroacetic Acid and Other α-Haloacids. Chemical Research in Toxicology, 1998, 11, 1332-1338.	3.3	112
137	Shifting Substrate Specificity of Human Clutathione Transferase (from Class Pi to Class Alpha) by a Single Point Mutation. Biochemical and Biophysical Research Communications, 1998, 252, 184-189.	2.1	22
138	Polymorphism of phase II enzymes: identification of new enzymes and polymorphic variants by database analysis. Toxicology Letters, 1998, 102-103, 149-154.	0.8	18
139	Glutathione transferase Zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochemical Journal, 1998, 331, 371-374.	3.7	134
140	Structure and organization of the human Theta-class glutathione S-transferase and d-dopachrome tautomerase gene complex. Biochemical Journal, 1998, 334, 617-623.	3.7	90
141	Catalytic Mechanism and Role of Hydroxyl Residues in the Active Site of Theta Class Glutathione S-Transferases. Journal of Biological Chemistry, 1997, 272, 29681-29686.	3.4	68
142	Identification of an essential cysteine residue in human glutathione synthase. Biochemical Journal, 1997, 321, 207-210.	3.7	19
143	Purification and characterization of a recombinant human Theta-class glutathione transferase (CSTT2-2). Biochemical Journal, 1996, 315, 727-732.	3.7	70
144	Mutagenesis of the active site of the human Theta-class glutathione transferase GSTT2-2: catalysis with different substrates involves different residues. Biochemical Journal, 1996, 319, 315-321.	3.7	68

#	Article	IF	CITATIONS
145	A structurally derived consensus pattern for theta class glutathione transferases. Protein Engineering, Design and Selection, 1996, 9, 327-332.	2.1	32
146	Application of HUMF13A01 (AAAG)n STR Polymorphism to the Genetic Diagnosis of Coagulation Factor XIII Deficiency. Thrombosis and Haemostasis, 1996, 76, 0879-0882.	3.4	12
147	Structural analysis of human alpha-class glutathione transferase A1-1 in the apo-form and in complexes with ethacrynic acid and its glutathione conjugate. Structure, 1995, 3, 717-727.	3.3	186
148	Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1-1. Journal of Molecular Biology, 1995, 247, 765-773.	4.2	60
149	Crystallization and preliminary X-ray diffraction studies of a glutathione S-Transferase from the Australian sheep blowfly, Lucilia cuprina. Journal of Molecular Biology, 1994, 236, 1407-1409.	4.2	14
150	?1Acid glycoprotein expression in human leukocytes: Possible correlation between ?1-acid glycoprotein and inflammatory cytokines in rheumatoid arthritis. Inflammation, 1993, 17, 33-45.	3.8	37
151	Inhibition of erythrocyte glutathione conjugate transport by polyethoxylated surfactants. FEBS Letters, 1993, 315, 298-300.	2.8	8
152	Structure Determination and Refinement of Human Alpha Class Glutathione Transferase A1-1, and a Comparison with the Mu and Pi Class Enzymes. Journal of Molecular Biology, 1993, 232, 192-212.	4.2	453
153	Structure and organization of the human alpha class glutathione S -transferase genes and related pseudogenes. Genomics, 1993, 18, 680-686.	2.9	45
154	The human ubiquitin/52-residue ribosomal protein fusion gene subfamily (UbA52) is composed primarily of processed pseudogenes. Genomics, 1992, 14, 520-522.	2.9	9
155	Erythrocyte membrane transport of glutathione conjugates and oxidized glutathione in the dubin-johnson syndrome and in rats with hereditary hyperbilirubinemia. Hepatology, 1992, 15, 722-725.	7.3	37
156	Glyoxalase 2 deficiency in the erythrocytes of a horse: 1H NMR studies of enzyme kinetics and transport of S-lactoylglutathione. Archives of Biochemistry and Biophysics, 1991, 291, 291-299.	3.0	24
157	Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class Alpha glutathione transferase. FEBS Letters, 1991, 293, 153-155.	2.8	108
158	The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Research, 1991, 19, 1035-1040.	14.5	135
159	Mapping of class alpha glutathione S-transferase 2 (Gst-2) genes to the vicinity of the d locus on mouse chromosome 9. Genomics, 1990, 8, 90-96.	2.9	17
160	Evolution of human $\hat{l}\pm 1$ -acid glycoprotein genes and surrounding Alu repeats. Genomics, 1990, 6, 659-665.	2.9	22
161	Do the major human glutathioneS-transferases have fatty acid ethyl ester synthase activity?. FEBS Letters, 1990, 275, 58-60.	2.8	10
162	BamHI and EcoRI restriction fragment length polymorphisms at the glutathinne S-transferase 3 locus. Nucleic Acids Research, 1989, 17, 7550-7550.	14.5	4

#	Article	IF	CITATIONS
163	Ubiquitin. Trends in Genetics, 1989, 5, 161.	6.7	Ο
164	Crystallization of GST2, a human class alpha glutathione transferase. Journal of Molecular Biology, 1989, 208, 369-370.	4.2	26
165	Expression of an enzymatically active parasite molecule in Escherichia coli: Schistosoma japonicum glutathione S-transferase. Molecular and Biochemical Parasitology, 1988, 27, 249-256.	1.1	72
166	Structure and characterisation of a duplicated human $\hat{I}\pm 1$ acid glycoprotein gene. Gene, 1988, 66, 97-106.	2.2	31
167	An improved method for mapping recombinant λ phage clones. Nucleic Acids Research, 1988, 16, 1198-1198.	14.5	9
168	A new RFLP at the human vitamin-D binding protein (hDBP) locus. Nucleic Acids Research, 1988, 16, 8199-8199.	14.5	2
169	The human ubiquitin gene family: structure of a gene and pseudogenes from the Ub B subfamily. Nucleic Acids Research, 1987, 15, 443-463.	14.5	158
170	Nudeotide sequence of a human ubiquhin Ub B processed pseudogene. Nucleic Acids Research, 1987, 15, 4352-4352.	14.5	12
171	A SINGLE α-GLOBIN GENE DELETION IN AUSTRALIAN ABORIGINES. The Australian Journal of Experimental Biology and Medical Science, 1986, 64, 297-306.	0.7	11
172	TRANSPORT OF THE S-2,4 DINITROPHENYL CONJUGATE OF GLUTATHIONE FROM ERYTHROCYTES. British Journal of Haematology, 1984, 58, 200-201.	2.5	3
173	Re-evaluation of the proposed interrelationship between thyroxine-binding globulin (TBG) and α1-antitrypsin (PI). Clinica Chimica Acta, 1984, 139, 65-73.	1.1	4
174	An electrophoretic investigation of plasma fibronectin by immunofixation after agarose gel electrophoresis. Electrophoresis, 1983, 4, 277-281.	2.4	1
175	Biochemical characterisation of genetically variant and abnormal blood coagulation factor XIII A subunits. Clinica Chimica Acta, 1983, 133, 141-151.	1.1	8
176	NADH-ferricyanide reductase, a convenient approach to the evaluation of nadh-methaemoglobin reductase in human erythrocytes. Clinica Chimica Acta, 1981, 109, 233-237.	1.1	37
177	Transport of glutathioneS-conjugate from human erythrocytes. FEBS Letters, 1981, 124, 163-165.	2.8	115
178	Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation Through NEK7 Deglutathionylation. SSRN Electronic Journal, 0, , .	0.4	0