Jefferson C Frisbee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8498243/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1476-H1498.	3.2	158
2	Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1304-H1311.	3.2	136
3	Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R307-R316.	1.8	107
4	Aerobic exercise training reduces arterial stiffness in metabolic syndrome. Journal of Applied Physiology, 2014, 116, 1396-1404.	2.5	92
5	Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2160-H2168.	3.2	90
6	Hypertensionâ€Independent Microvascular Rarefaction in the Obese Zucker Rat Model of the Metabolic Syndrome. Microcirculation, 2005, 12, 383-392.	1.8	89
7	Augmented adrenergic vasoconstriction in hypertensive diabetic obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H816-H820.	3.2	85
8	Exercise training blunts microvascular rarefaction in the metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2483-H2492.	3.2	78
9	Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H104-H111.	3.2	77
10	Low-flow vascular remodeling in the metabolic syndrome X. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H964-H970.	3.2	74
11	Impaired skeletal muscle perfusion in obese Zucker rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R1124-R1134.	1.8	67
12	Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease?. Journal of Applied Physiology, 2010, 108, 1041-1051.	2.5	66
13	Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R309-R319.	1.8	54
14	Contribution of cytochrome P-450 ω-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1517-H1526.	3.2	52
15	Enhanced arteriolar α-adrenergic constriction impairs dilator responses and skeletal muscle perfusion in obese Zucker rats. Journal of Applied Physiology, 2004, 97, 764-772.	2.5	50
16	Vascular function in the metabolic syndrome and the effects on skeletal muscle perfusion: lessons from the obese Zucker rat. Essays in Biochemistry, 2006, 42, 145-160.	4.7	49
17	Impaired dilation of skeletal muscle microvessels to reduced oxygen tension in diabetic obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1568-H1574.	3.2	46
18	Obesity, Insulin Resistance, and Microvessel Density. Microcirculation, 2007, 14, 289-298.	1.8	44

2

#	Article	IF	CITATIONS
19	20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1066-H1074.	3.2	43
20	Spatial heterogeneity in skeletal muscle microvascular blood flow distribution is increased in the metabolic syndrome. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R975-R986.	1.8	36
21	Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. Journal of Physiology, 2016, 594, 2233-2243.	2.9	35
22	Increased vascular thromboxane generation impairs dilation of skeletal muscle arterioles of obese Zucker rats with reduced oxygen tension. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1522-H1528.	3.2	33
23	Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1714-H1728.	3.2	33
24	Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1846-H1859.	3.2	33
25	Altered Mechanisms Underlying Hypoxic Dilation of Skeletal Muscle Resistance Arteries of Hypertensive versus Normotensive Dahl Rats. Microcirculation, 2001, 8, 115-127.	1.8	32
26	Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vascular Pharmacology, 2012, 57, 150-159.	2.1	32
27	High-salt diet impairs hypoxia-induced cAMP production and hyperpolarization in rat skeletal muscle arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1808-H1815.	3.2	31
28	Divergence between arterial perfusion and fatigue resistance in skeletal muscle in the metabolic syndrome. Experimental Physiology, 2011, 96, 369-383.	2.0	31
29	Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H488-H504.	3.2	30
30	Integration of skeletal muscle resistance arteriolar reactivity for perfusion responses in the metabolic syndrome. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1771-R1782.	1.8	29
31	20â€HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Spragueâ€Dawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	27
32	Vascular adrenergic tone and structural narrowing constrain reactive hyperemia in skeletal muscle of obese Zucker rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2066-H2074.	3.2	26
33	Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease?. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H547-H558.	3.2	26
34	Aortic dysfunction in metabolic syndrome mediated by perivascular adipose tissue TNFα―and NOX2â€dependent pathway. Experimental Physiology, 2018, 103, 590-603.	2.0	26
35	Protection from vascular dysfunction in female rats with chronic stress and depressive symptoms. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1070-H1084. 	3.2	25
36	Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. Redox Biology, 2019, 26, 101285.	9.0	24

#	Article	IF	CITATIONS
37	Impaired hemorrhage tolerance in the obese Zucker rat model of metabolic syndrome. Journal of Applied Physiology, 2006, 100, 465-473.	2.5	23
38	Quantification of Mitochondrial Oxidative Phosphorylation in Metabolic Disease: Application to Type 2 Diabetes. International Journal of Molecular Sciences, 2019, 20, 5271.	4.1	23
39	Regulation ofIn SituSkeletal Muscle Arteriolar Tone: Interactions Between Two Parameters. Microcirculation, 2002, 9, 443-462.	1.8	21
40	Vascular Dysfunction in Obesity and Insulin Resistance. Microcirculation, 2007, 14, 269-271.	1.8	21
41	Impaired Tissue Oxygenation in Metabolic Syndrome Requires Increased Microvascular Perfusion Heterogeneity. Journal of Cardiovascular Translational Research, 2017, 10, 69-81.	2.4	20
42	Role of Chronic Stress and Exercise on Microvascular Function in Metabolic Syndrome. Medicine and Science in Sports and Exercise, 2018, 50, 957-966.	0.4	20
43	Arterial Function in Cardio-Metabolic Diseases: From the Microcirculation to the Large Conduits. Progress in Cardiovascular Diseases, 2015, 57, 489-496.	3.1	18
44	Psychological stressâ€induced cerebrovascular dysfunction: the role of metabolic syndrome and exercise. Experimental Physiology, 2018, 103, 761-776.	2.0	18
45	Skeletal muscle performance in metabolic disease: Microvascular or mitochondrial limitation or both?. Microcirculation, 2019, 26, e12517.	1.8	18
46	Differential Impact of Dilator Stimuli on Increased Myogenic Activation of Cerebral and Skeletal Muscle Resistance Arterioles in Obese Zucker Rats. Microcirculation, 2013, 20, 579-589.	1.8	16
47	A conceptual framework for predicting and addressing the consequences of diseaseâ€related microvascular dysfunction. Microcirculation, 2017, 24, e12359.	1.8	16
48	Computational analyses of intravascular tracer washout reveal altered capillaryâ€ l evel flow distributions in obese Zucker rats. Journal of Physiology, 2011, 589, 4527-4543.	2.9	15
49	Impact of Increased Intramuscular Perfusion Heterogeneity on Skeletal Muscle Microvascular Hematocrit in the Metabolic Syndrome. Microcirculation, 2014, 21, 677-687.	1.8	15
50	Protection from chronic stress- and depressive symptom-induced vascular endothelial dysfunction in female rats is abolished by preexisting metabolic disease. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1085-H1097.	3.2	12
51	Chronic atorvastatin and exercise can partially reverse established skeletal muscle microvasculopathy in metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H855-H870.	3.2	12
52	Type 2 diabetes mellitus in the Goto-Kakizaki rat impairs microvascular function and contributes to premature skeletal muscle fatigue. Journal of Applied Physiology, 2019, 126, 626-637.	2.5	12
53	Altered postâ€capillary and collecting venular reactivity in skeletal muscle with metabolic syndrome. Journal of Physiology, 2017, 595, 5159-5174.	2.9	9
54	Chronic stress induced perivascular adipose tissue impairment of aortic function and the therapeutic effect of exercise. Experimental Physiology, 2021, 106, 1343-1358.	2.0	9

#	Article	IF	CITATIONS
55	Parenchymal Tissue Cytochrome P450 4A Enzymes Contribute to Oxygen-Induced Alterations in Skeletal Muscle Arteriolar Tone. Microvascular Research, 2002, 63, 340-343.	2.5	8
56	Angiostatin Does Not Contribute to Skeletal Muscle Microvascular Rarefaction with Low Nitric Oxide Bioavailability. Microcirculation, 2007, 14, 145-153.	1.8	8
57	Insidious incrementalism: The silent failure of the microcirculation with increasing peripheral vascular disease risk. Microcirculation, 2017, 24, e12332.	1.8	8
58	Endothelium-dependent impairments to cerebral vascular reactivity with type 2 diabetes mellitus in the Goto-Kakizaki rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R149-R159.	1.8	8
59	Skeletal muscle energetics are compromised only during high-intensity contractions in the Goto-Kakizaki rat model of type 2 diabetes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R356-R368.	1.8	7
60	Beneficial Pleiotropic Antidepressive Effects of Cardiovascular Disease Risk Factor Interventions in the Metabolic Syndrome. Journal of the American Heart Association, 2018, 7, .	3.7	6
61	Microvessel Density: Integrating Sex-Based Differences and Elevated Cardiovascular Risks in Metabolic Syndrome. Journal of Vascular Research, 2022, 59, 1-15.	1.4	6
62	20-HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Sprague-Dawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	6
63	Contribution of Extrinsic Factors and Intrinsic Vascular Alterations to Reduced Arteriolar Reactivity with High alt Diet and Hypertension. Microcirculation, 2000, 7, 281-289.	1.8	4
64	Altered distribution of adrenergic constrictor responses contributes to skeletal muscle perfusion abnormalities in metabolic syndrome. Microcirculation, 2017, 24, e12349.	1.8	4
65	Obesity, insulin resistance, and microvascular adaptation. Microcirculation, 2017, 24, e12346.	1.8	2
66	The contribution of muscarinic-receptor-mediated responses to epineurial vascular diameter at the sciatic nerve. Canadian Journal of Physiology and Pharmacology, 2018, 96, 855-858.	1.4	1
67	Shifted vascular optimization: the emergence of a new arteriolar behaviour with chronic metabolic disease. Experimental Physiology, 2020, 105, 1431-1439.	2.0	1
68	Can Myogenic Tone Protect Endothelial Function? Integrating Myogenic Activation and Dilator Reactivity for Cerebral Resistance Arteries in Metabolic Disease. Journal of Vascular Research, 2021, 58, 286-300.	1.4	1
69	HMGâ€CoA reductase inhibitors improve microvascular outcomes in the metabolic syndrome independent of plasma cholesterol profile. FASEB Journal, 2007, 21, A849.	0.5	1
70	Special topics issue: "Complexity in the microcirculation― Microcirculation, 2019, 26, e12551.	1.8	0
71	Understanding complex behaviours in the microcirculation: From blood flow to oxygenation. Experimental Physiology, 2020, 105, 1429-1430.	2.0	0
72	MicroRNA miRâ€378â€3p is an Essential Regulator of Autophagy and Proliferation in Endothelial Cells. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
73	Loss of BReast CAncer Susceptibility Gene 2 Exacerbates Angiotensinâ€Iâ€induced Endothelial Dysfunction. FASEB Journal, 2021, 35, .	0.5	0
74	Fatty acidâ€binding Proteinâ€3 (FABP3) is a Novel Regulator of Endothelial Function. FASEB Journal, 2021, 35, .	0.5	0
75	Chronic Nitric Oxide Synthase Inhibition Causes Skeletal Muscle Microvessel Rarefaction Independent of Increased Mean Arterial Pressure. FASEB Journal, 2006, 20, A711.	0.5	Ο
76	Growth dependent changes in the endothelial factors regulating arteriolar tone. FASEB Journal, 2006, 20, A270.	0.5	0
77	The Effects of Obesity and Exercise on Myogenic Regulatory Factors. FASEB Journal, 2007, 21, A830.	0.5	Ο
78	Hydrogen peroxide emerges as a regulator of arteriolar tone during microvascular network growth. FASEB Journal, 2007, 21, A494.	0.5	0
79	Increased myogenic responsiveness of skeletal muscle arterioles with juvenile growth. FASEB Journal, 2007, 21, A494.	0.5	0
80	Skeletal Muscle Mitochondrial Subpopulation Response in a Type 2 Diabetic Mouse Model. FASEB Journal, 2009, 23, LB93.	0.5	0
81	Psychological stress and endothelial dysfunction : a link between depression and vascular disease?. FASEB Journal, 2009, 23, 774.9.	0.5	0
82	Distinct Mitochondrial Subpopulation Response in a Type 2 Diabetic Model. FASEB Journal, 2009, 23, 990.22.	0.5	0
83	Protection from Diabetesâ€Associated Apoptosis with Heat Shock Protein 27 Overexpression. FASEB Journal, 2009, 23, 953.18.	0.5	0
84	Correlations between peripheral vascular function, inflammation and depression in human subjects. FASEB Journal, 2009, 23, 795.3.	0.5	0
85	Altered Spatioâ€Temporal Microvascular Blood Flow Distribution Patterns in Skeletal Muscle with Metabolic Syndrome. FASEB Journal, 2010, 24, 978.1.	0.5	0
86	Impaired Arteriolar Dilation in a Mouse Model of Familial Hypercholesterolemia: Impact of Chronic Exercise and Antiâ€Cholesterol Therapy. FASEB Journal, 2010, 24, 593.5.	0.5	0
87	Effect of remote ischemic preconditioning on hepatic parenchymal and microvascular damage in obesity. FASEB Journal, 2011, 25, .	0.5	0
88	Aging Disrupts The Balance Between Positive And Negative Angiogenic Factors In Skeletal Muscle. FASEB Journal, 2011, 25, lb557.	0.5	0
89	EARLY MICROVESSEL LOSS IN THE METABOLIC SYNDROME. FASEB Journal, 2012, 26, 682.9.	0.5	0
90	DECREASED TEMPORAL ACTIVITY AT MICROVASCULAR BIFURCATIONS EXACERBATES PERFUSION HETEROGENEITY IN SKELETAL MUSCLE IN THE METABOLIC SYNDROME. FASEB Journal, 2012, 26, 860.12.	0.5	0

#	Article	IF	CITATIONS
91	Blunted temporal activity of microvascular perfusion heterogeneity in metabolic syndrome: a new attractor for peripheral vascular disease?. FASEB Journal, 2013, 27, 898.11.	0.5	0
92	Depressive Symptoms, Inflammation and Microvascular Dysfunction: Presence of a Gender Disparity. FASEB Journal, 2013, 27, 900.6.	0.5	0
93	Differential impact of dilator stimuli on increased myogenic activation of cerebral and skeletal muscle resistance arterioles in obese zucker rats. FASEB Journal, 2013, 27, 901.11.	0.5	0
94	Chronic Depressive Symptoms and Gender: Impact on Conduit Vascular Outcomes. FASEB Journal, 2013, 27, 1136.10.	0.5	0
95	Effect of Gastric Bypass Surgery on Endothelial function and Heart Rate Variability. FASEB Journal, 2015, 29, LB568.	0.5	0
96	Effects of Chronic Stress on Pancreatic Beta Cell Density in Obese and Lean Zucker Rats. FASEB Journal, 2015, 29, 997.4.	0.5	0
97	Muscarinic Receptorâ€Mediated Regulation of Epineurial Blood Vessels of the Sciatic Nerve. FASEB Journal, 2018, 32, 705.2.	0.5	0
98	Effects of Phenylephrine and Norepinephrine on the Diameter of the Epineurial Vessels Supplying the Sciatic Nerve. FASEB Journal, 2018, 32, 705.3.	0.5	0
99	It Does Not Do to Dwell on Single Components and Forget the Importance of Complete Networks: Optimizing an Integrated Hemodynamic Model Derived from Experimental Data. FASEB Journal, 2018, 32, 704.8.	0.5	0
100	Skeletal Muscle Mitochondrial Function in Gotoâ€Kakizaki Rat Model of Type 2 Diabetes. FASEB Journal, 2019, 33, 701.7.	0.5	0