Galia T Debelouchina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849824/publications.pdf Version: 2024-02-01

304743 454955 2,808 30 22 30 citations h-index g-index papers 34 34 34 3436 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic nuclear polarization at high magnetic fields. Journal of Chemical Physics, 2008, 128, 052211.	3.0	734
2	Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5468-5473.	7.1	479
3	Intermolecular Structure Determination of Amyloid Fibrils with Magic-Angle Spinning and Dynamic Nuclear Polarization NMR. Journal of the American Chemical Society, 2011, 133, 13967-13974.	13.7	160
4	Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. Journal of Chemical Physics, 2011, 134, 125105.	3.0	133
5	The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 2018, 9, 4517.	12.8	124
6	Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Physical Chemistry Chemical Physics, 2010, 12, 5911.	2.8	114
7	<i>Z</i> -Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by Monoaryloxidepyrrolide (MAP) Catalysts. Macromolecules, 2010, 43, 7515-7522.	4.8	110
8	Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy. Journal of the American Chemical Society, 2013, 135, 19237-19247.	13.7	82
9	Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25.	28.9	81
10	Magic Angle Spinning NMR Analysis of β ₂ -Microglobulin Amyloid Fibrils in Two Distinct Morphologies. Journal of the American Chemical Society, 2010, 132, 10414-10423.	13.7	79
11	Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nature Chemical Biology, 2017, 13, 105-110.	8.0	79
12	Intermolecular Alignment in β ₂ -Microglobulin Amyloid Fibrils. Journal of the American Chemical Society, 2010, 132, 17077-17079.	13.7	69
13	Distinct Prion Strains Are Defined by Amyloid Core Structure and Chaperone Binding Site Dynamics. Chemistry and Biology, 2014, 21, 295-305.	6.0	68
14	Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3642-3647.	7.1	63
15	Synthesis of a BDPA-TEMPO Biradical. Organic Letters, 2009, 11, 1871-1874.	4.6	61
16	Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nature Communications, 2018, 9, 1394.	12.8	59
17	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solidâ€ S tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 6300-6305.	13.8	44
18	A molecular engineering toolbox for the structural biologist. Quarterly Reviews of Biophysics, 2017, 50, e7.	5.7	42

GALIA T DEBELOUCHINA

#	ARTICLE	IF	CITATIONS
19	Secondary Structure in the Core of Amyloid Fibrils Formed from Human β ₂ m and its Truncated Variant ΔN6. Journal of the American Chemical Society, 2014, 136, 6313-6325.	13.7	40
20	Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors. Journal of Biological Chemistry, 2013, 288, 7327-7337.	3.4	36
21	Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC. Biophysical Journal, 2021, 120, 1276-1287.	0.5	33
22	Increasing AIP Macrocycle Size Reveals Key Features of <i>agr</i> Activation in <i>Staphylococcus aureus</i> . ChemBioChem, 2015, 16, 1093-1100.	2.6	32
23	Structure of the branched intermediate in protein splicing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8422-8427.	7.1	26
24	Targetable Tetrazineâ€Based Dynamic Nuclear Polarization Agents for Biological Systems. ChemBioChem, 2020, 21, 1315-1319.	2.6	21
25	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2019, 131, 6366-6371.	2.0	10
26	DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. Journal of Magnetic Resonance Open, 2022, 10-11, 100057.	1.1	10
27	Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Frontiers in Molecular Biosciences, 2021, 8, 741581.	3.5	9
28	A Chemical Biology Primer for NMR Spectroscopists. Journal of Magnetic Resonance Open, 2022, 10-11, 100044.	1.1	4
29	Fused Split Inteins: Tools for Introducing Multiple Protein Modifications. Methods in Molecular Biology, 2020, 2133, 163-181.	0.9	3
30	<i>In Situ</i> Assembly of Transmembrane Proteins from Expressed and Synthetic Components in Giant Unilamellar Vesicles. ACS Chemical Biology, 2022, 17, 1015-1021.	3.4	1