Shelley L Anna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8497948/publications.pdf

Version: 2024-02-01

236612 223531 5,610 48 25 46 citations h-index g-index papers 49 49 49 4993 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Formation of dispersions using "flow focusing―in microchannels. Applied Physics Letters, 2003, 82, 364-366.	1.5	1,998
2	Microfluidic methods for generating continuous droplet streams. Journal Physics D: Applied Physics, 2007, 40, R319-R336.	1.3	677
3	Elasto-capillary thinning and breakup of model elastic liquids. Journal of Rheology, 2001, 45, 115-138.	1.3	443
4	Droplets and Bubbles in Microfluidic Devices. Annual Review of Fluid Mechanics, 2016, 48, 285-309.	10.8	394
5	Microscale tipstreaming in a microfluidic flow focusing device. Physics of Fluids, 2006, 18, 121512.	1.6	322
6	Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 2008, 78, 036317.	0.8	291
7	Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Physics of Fluids, 2009, 21, .	1.6	193
8	An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. Journal of Rheology, 2001, 45, 83-114.	1.3	142
9	A Microtensiometer To Probe the Effect of Radius of Curvature on Surfactant Transport to a Spherical Interface. Langmuir, 2010, 26, 13310-13319.	1.6	103
10	Interfacial Dynamics and Rheology of Polymer-Grafted Nanoparticles at Air–Water and Xylene–Water Interfaces. Langmuir, 2012, 28, 8052-8063.	1.6	101
11	Diffusion-limited adsorption to a spherical geometry: The impact of curvature and competitive time scales. Physical Review E, 2010, 82, 011604.	0.8	83
12	A non-gradient based algorithm for the determination of surface tension from a pendant drop: Application to low Bond number drop shapes. Journal of Colloid and Interface Science, 2009, 333, 557-562.	5 . 0	64
13	Role of Surface Anchoring and Geometric Confinement on Focal Conic Textures in Smectic-A Liquid Crystals. Langmuir, 2006, 22, 9986-9993.	1.6	59
14	Using bulk convection in a microtensiometer to approach kinetic-limited surfactant dynamics at fluid–fluid interfaces. Journal of Colloid and Interface Science, 2012, 372, 183-191.	5 . 0	59
15	Competition Between Viscoelasticity and Surfactant Dynamics in Flow Focusing Microfluidics. Macromolecular Materials and Engineering, 2011, 296, 203-213.	1.7	46
16	The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 467, 135-142.	2.3	46
17	Effect of surfactant tail length and ionic strength on the interfacial properties of nanoparticle–surfactant complexes. Soft Matter, 2018, 14, 112-123.	1.2	44
18	Probing timescales for colloidal particle adsorption using slug bubbles in rectangular microchannels. Soft Matter, 2012, 8, 10759.	1.2	40

#	Article	IF	CITATIONS
19	On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. Journal of Non-Newtonian Fluid Mechanics, 1999, 87, 307-335.	1.0	38
20	Regular perturbation analysis of small amplitude oscillatory dilatation of an interface in a capillary pressure tensiometer. Journal of Rheology, 2015, 59, 85-117.	1.3	37
21	Sequential Adsorption of an Irreversibly Adsorbed Nonionic Surfactant and an Anionic Surfactant at an Oil/Aqueous Interface. Langmuir, 2015, 31, 4063-4071.	1.6	35
22	Passive breakup of viscoelastic droplets and filament self-thinning at a microfluidic T-junction. Journal of Rheology, 2009, 53, 663-683.	1.3	28
23	Predicting conditions for microscale surfactant mediated tipstreaming. Physics of Fluids, 2012, 24, .	1.6	28
24	The effect of alkane tail length of C E8 surfactants on transport to the silicone oil–water interface. Journal of Colloid and Interface Science, 2011, 355, 231-236.	5.0	27
25	A compact dual-crystal modulated birefringence-measurement system for microgravity applications. Measurement Science and Technology, 1999, 10, 946-955.	1.4	26
26	A criterion to assess the impact of confined volumes on surfactant transport to liquid–fluid interfaces. Soft Matter, 2012, 8, 8917.	1.2	26
27	Controlling thread formation during tipstreaming through an active feedback control loop. Lab on A Chip, 2013, 13, 4534.	3.1	22
28	Effect of a controlled pre-deformation history on extensional viscosity of dilute polymer solutions. Rheologica Acta, 2008, 47, 841-859.	1.1	21
29	Highly uniform micro-cavity arrays in flexible elastomer film. Soft Matter, 2009, 5, 743.	1.2	21
30	Tuning bubbly structures in microchannels. Biomicrofluidics, 2012, 6, 22004-2200418.	1.2	21
31	Formation of a Rigid Hydrophobin Film and Disruption by an Anionic Surfactant at an Air/Water Interface. Langmuir, 2016, 32, 5542-5551.	1.6	20
32	Insoluble layer deposition and dilatational rheology at a microscale spherical cap interface. Soft Matter, 2016, 12, 7038-7055.	1.2	18
33	Development and characterization of a "store and create―microfluidic device to determine the heterogeneous freezing properties of ice nucleating particles. Aerosol Science and Technology, 2020, 54, 79-93.	1.5	18
34	Formation and ordering of topological defect arrays produced by dilatational strain and shear flow in smectic- <i>A</i> livaliquid crystals. Physical Review E, 2012, 85, 011701.	0.8	17
35	Two-Phase Flow in Porous Media: Predicting Its Dependence on Capillary Number and Viscosity Ratio. Transport in Porous Media, 2011, 86, 243-259.	1.2	15
36	Stability of a compound sessile drop at the axisymmetric configuration. Journal of Colloid and Interface Science, 2016, 462, 88-99.	5.0	15

#	Article	lF	CITATIONS
37	Microfluidic Droplet-Based Tool To Determine Phase Behavior of a Fluid System with High Composition Resolution. Journal of Physical Chemistry B, 2018, 122, 4067-4076.	1.2	13
38	Gravity driven current during the coalescence of two sessile drops. Physics of Fluids, 2015, 27, .	1.6	12
39	Comparative microfluidic screening of amino acid salt solutions for post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 2015, 43, 189-197.	2.3	11
40	Formation and elasticity of membranes of the class II hydrophobin Cerato-ulmin at oil-water interfaces. Colloids and Surfaces B: Biointerfaces, 2018, 164, 98-106.	2.5	11
41	Droplet-based characterization of surfactant efficacy in colloidal stabilization of carbon black in nonpolar solvents. Journal of Colloid and Interface Science, 2017, 493, 265-274.	5.0	8
42	Interaction of toroidal focal conic defects with shear flow. Soft Matter, 2012, 8, 6698.	1.2	5
43	Characterization of Ferromagnetic Nanoparticles Produced by A Carbon Arc. Materials Research Society Symposia Proceedings, 1994, 359, 35.	0.1	3
44	Impact of Viscosity Ratio on the Dynamics of Droplet Breakup in a Microfluidic Flow Focusing Device. AIP Conference Proceedings, 2008, , .	0.3	2
45	Numerical simulation of droplet formation in a microchannel device. International Journal of Multiphysics, 2013, 7, 271-286.	0.3	2
46	Modeling and Simulation of a Rollerball Microfluidic Device. , 2009, , .		1
47	A Microfluidic Tensiometer. , 2004, , 431.		0
48	Droplet Breakup in Shear and Elongation Dominated Flows in Microfluidic Devices., 2005,, 669.		0