List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8497509/publications.pdf Version: 2024-02-01

		34105	30087
131	11,173	52	103
papers	citations	h-index	g-index
135	135	135	8920
all docs	docs citations	times ranked	citing authors

ALAN K RETTS

#	Article	IF	CITATIONS
1	Climate change and society. AIMS Geosciences, 2021, 7, 194-218.	1.0	2
2	Evaluation of Daily Precipitation from the ERA5 Global Reanalysis against GHCN Observations in the Northeastern United States. Climate, 2020, 8, 148.	2.8	28
3	Evaluation of the FLake Model in ERA5 for Lake Champlain. Frontiers in Environmental Science, 2020, 8,	3.3	2
4	An Analog Approach for Weather Estimation Using Climate Projections and Reanalysis Data. Journal of Applied Meteorology and Climatology, 2019, 58, 1763-1777.	1.5	5
5	Near-Surface Biases in ERA5 Over the Canadian Prairies. Frontiers in Environmental Science, 2019, 7, .	3.3	56
6	Understanding Land–Atmosphere–Climate Coupling from the Canadian Prairie Dataset. Environments - MDPI, 2018, 5, 129.	3.3	1
7	Revisiting Hydrometeorology Using Cloud and Climate Observations. Journal of Hydrometeorology, 2017, 18, 939-955.	1.9	14
8	Analysis of nearâ€surface biases in <scp>ERA</scp> â€ <scp>I</scp> nterim over the <scp>C</scp> anadian <scp>P</scp> rairies. Journal of Advances in Modeling Earth Systems, 2017, 9, 2158-2173.	3.8	21
9	Hydroclimatic variability and predictability: a survey of recent research. Hydrology and Earth System Sciences, 2017, 21, 3777-3798.	4.9	28
10	Annual Climatology of the Diurnal Cycle on the Canadian Prairies. Frontiers in Earth Science, 2016, 4, .	1.8	10
11	Bridging the climate information gap: a framework for engaging knowledge brokers and decision makers in state climate assessments. Climatic Change, 2016, 138, 383-395.	3.6	5
12	Integrating solar energy and climate research into science education. Earth's Future, 2016, 4, 2-13.	6.3	3
13	Characterization of increased persistence and intensity of precipitation in the northeastern United States. Geophysical Research Letters, 2015, 42, 1888-1893.	4.0	65
14	Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Frontiers in Earth Science, 2015, 3, .	1.8	15
15	Coupling of winter climate transitions to snow and clouds over the Prairies. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1118-1139.	3.3	45
16	Climate coupling between temperature, humidity, precipitation, and cloud cover over the Canadian Prairies. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,305.	3.3	42
17	Triggering Deep Convection with a Probabilistic Plume Model. Journals of the Atmospheric Sciences, 2014, 71, 3881-3901.	1.7	29
18	Cloud radiative forcing of the diurnal cycle climate of the Canadian Prairies. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8935-8953.	3.3	42

#	Article	IF	CITATIONS
19	A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part II: Shallow Convection Case. Journals of the Atmospheric Sciences, 2013, 70, 1557-1576.	1.7	30
20	A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part I: Clear-Sky Case. Journals of the Atmospheric Sciences, 2013, 70, 1543-1556.	1.7	22
21	Impact of land use change on the diurnal cycle climate of the Canadian Prairies. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,996.	3.3	42
22	Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains. Journal of Geophysical Research, 2012, 117, .	3.3	11
23	Correction to "Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plainsâ€, Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	0
24	Environmental Journalism Revisited. , 2012, , 382-390.		5
25	Vermont Climate Change Indicators. Weather, Climate, and Society, 2011, 3, 106-115.	1.1	19
26	Communicating climate science. Eos, 2011, 92, 203-204.	0.1	1
27	Seasonal climate transitions in New England. Weather, 2011, 66, 245-248.	0.7	13
28	Progress in understanding land-surface-atmosphere coupling from LBA research. Journal of Advances in Modeling Earth Systems, 2010, 2, .	3.8	38
29	Idealized model for changes in equilibrium temperature, mixed layer depth, and boundary layer cloud over land in a doubled CO ₂ climate. Journal of Geophysical Research, 2010, 115, .	3.3	12
30	Impact of deforestation in the Amazon basin on cloud climatology. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3670-3674.	7.1	143
31	A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System. Journal of Hydrometeorology, 2009, 10, 623-643.	1.9	695
32	Landâ€ S urfaceâ€Atmosphere Coupling in Observations and Models. Journal of Advances in Modeling Earth Systems, 2009, 1, .	3.8	123
33	Comparison of river basin hydrometeorology in ERAâ€Interim and ERAâ€40 reanalyses with observations. Journal of Geophysical Research, 2009, 114, .	3.3	84
34	Land-surface-cloud coupling and climate change. IOP Conference Series: Earth and Environmental Science, 2009, 6, 082004.	0.3	0
35	How well does the ERA40 surface water budget compare to observations in the Amazon River basin?. Journal of Geophysical Research, 2008, 113, .	3.3	19
36	Relationships between Land Surface and Near-Surface Atmospheric Variables in the NCEP North American Regional Reanalysis. Journal of Hydrometeorology, 2007, 8, 1184-1203.	1.9	50

#	Article	IF	CITATIONS
37	Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agricultural and Forest Meteorology, 2007, 142, 156-169.	4.8	48
38	Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. Journal of Geophysical Research, 2007, 112, .	3.3	55
39	Radiative scaling of the nocturnal boundary layer and the diurnal temperature range. Journal of Geophysical Research, 2006, 111, .	3.3	19
40	Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. Journal of Geophysical Research, 2006, 111, .	3.3	84
41	ISLSCP Initiative II global data sets: Surface boundary conditions and atmospheric forcings for land-atmosphere studies. Journal of Geophysical Research, 2006, 111, .	3.3	60
42	Assessing land-surface-atmosphere coupling in the ERA-40 reanalysis with boreal forest data. Agricultural and Forest Meteorology, 2006, 140, 365-382.	4.8	27
43	Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	67
44	Hydrometeorology of the Amazon in ERA-40. Journal of Hydrometeorology, 2005, 6, 764-774.	1.9	51
45	Understanding Hydrometeorology Using Global Models. Bulletin of the American Meteorological Society, 2004, 85, 1673-1688.	3.3	212
46	Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. Journal of Geophysical Research, 2004, 109, .	3.3	35
47	Estimates of net CO2flux by application of equilibrium boundary layer concepts to CO2and water vapor measurements from a tall tower. Journal of Geophysical Research, 2004, 109, .	3.3	64
48	The Boreal Climate. Global Change - the IGBP Series, 2004, , 93-114.	2.1	7
49	Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990–1999. Journal of Geophysical Research, 2003, 108, .	3.3	60
50	Eta model estimated land surface processes and the hydrologic cycle of the Mississippi basin. Journal of Geophysical Research, 2003, 108, .	3.3	42
51	Evaluation of the ERA-40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin. Journal of Hydrometeorology, 2003, 4, 1194-1211.	1.9	90
52	Surface diurnal cycle and boundary layer structure over Rondônia during the rainy season. Journal of Geophysical Research, 2002, 107, LBA 32-1.	3.3	61
53	Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. Journal of Geophysical Research, 2002, 107, LBA 12-1.	3.3	123
54	Study of diurnal cycle of convective precipitation over Amazonia using a single column model. Journal of Geophysical Research, 2002, 107, ACL 25-1-ACL 25-13.	3.3	84

#	Article	IF	CITATIONS
55	Transport of ozone to the surface by convective downdrafts at night. Journal of Geophysical Research, 2002, 107, LBA 13-1.	3.3	55
56	Near-surface climate in the boreal forest. Journal of Geophysical Research, 2001, 106, 33529-33541.	3.3	46
57	Impact of BOREAS on the ECMWF forecast model. Journal of Geophysical Research, 2001, 106, 33593-33604.	3.3	32
58	Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. Journal of Geophysical Research, 2001, 106, 33543-33550.	3.3	29
59	Hydrological Budgets and Surface Energy Balance of Seven Subbasins of the Mackenzie River from the ECMWF Model. Journal of Hydrometeorology, 2000, 1, 47-60.	1.9	19
60	NCEP–NCAR and ECMWF Reanalysis Surface Water and Energy Budgets for the Mississippi River Basin. Journal of Hydrometeorology, 2000, 1, 88-94.	1.9	82
61	Idealized Model for Equilibrium Boundary Layer over Land. Journal of Hydrometeorology, 2000, 1, 507-523.	1.9	65
62	Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood. Journal of Geophysical Research, 1999, 104, 19361-19366.	3.3	60
63	Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. Journal of Geophysical Research, 1999, 104, 19293-19306.	3.3	56
64	Controls on Evaporation in a Boreal Spruce Forest. Journal of Climate, 1999, 12, 1601-1618.	3.2	57
65	An Agenda for Land Surface Hydrology Research and a Call for the Second International Hydrological Decade. Bulletin of the American Meteorological Society, 1999, 80, 2043-2058.	3.3	188
66	Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. Journal of Geophysical Research, 1999, 104, 27803-27810.	3.3	112
67	Climate-Convection Feedbacks: Some Further Issues. Climatic Change, 1998, 39, 35-38.	3.6	54
68	Surface diurnal cycle over Venezuela. Meteorology and Atmospheric Physics, 1998, 67, 213-216.	2.0	3
69	Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS). Journal of Geophysical Research, 1998, 103, 23079-23085.	3.3	58
70	FIFE Surface Climate and Site-Average Dataset 1987–89. Journals of the Atmospheric Sciences, 1998, 55, 1091-1108.	1.7	187
71	Surface Energy and Water Balance for the Arkansas–Red River Basin from the ECMWF Reanalysis. Journal of Climate, 1998, 11, 2881-2897.	3.2	52
72	Comparison of the Land-Surface Interaction in the ECMWF Reanalysis Model with the 1987 FIFE Data. Monthly Weather Review, 1998, 126, 186-198.	1.4	34

#	Article	IF	CITATIONS
73	Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data. Monthly Weather Review, 1997, 125, 2896-2916.	1.4	196
74	Comparison of regional surface fluxes from boundary-layer budgets and aircraft measurements above boreal forest. Journal of Geophysical Research, 1997, 102, 29213-29218.	3.3	31
75	Radiosonde boundary layer budgets above a boreal forest. Journal of Geophysical Research, 1997, 102, 29205-29212.	3.3	69
76	Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science, 1997, 275, 502-509.	12.6	1,280
77	Comparison of BOREAS and Atmospheric Environment Service humidity sensors at Meadow Lake, Saskatchewan. Journal of Geophysical Research, 1997, 102, 28911-28913.	3.3	2
78	Aircraft encounters with strong coherent vortices over the boreal forest. Journal of Geophysical Research, 1997, 102, 29231-29234.	3.3	22
79	Albedo over the boreal forest. Journal of Geophysical Research, 1997, 102, 28901-28909.	3.3	368
80	The Parameterization of Deep Convection. , 1997, , 255-279.		19
81	Trade Cumulus: Observations and Modelling. , 1997, , 99-126.		9
82	The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. Journal of Geophysical Research, 1996, 101, 7209-7225.	3.3	600
83	Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 1996, 101, 7251-7268.	3.3	910
84	First International Satellite Land Surface Climatology Field Experiment 1987 sonde budget revisited. Journal of Geophysical Research, 1996, 101, 23285-23288.	3.3	32
85	The Anomalous Rainfall over the United States during July 1993: Sensitivity to Land Surface Parameterization and Soil Moisture Anomalies. Monthly Weather Review, 1996, 124, 362-383.	1.4	424
86	Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data. Monthly Weather Review, 1996, 124, 1480-1498.	1.4	71
87	A Lagged Mixing Parameterization for the Dry Convective Boundary Layer. Monthly Weather Review, 1995, 123, 1912-1915.	1.4	1
88	Relation between Mean Boundary-Layer Structure and Cloudiness at theR/Waldiviaduring ASTEX. Journals of the Atmospheric Sciences, 1995, 52, 2752-2762.	1.7	32
89	The FIFE surface diurnal cycle climate. Journal of Geophysical Research, 1995, 100, 25679.	3.3	128
90	Mean climate and transience in the tropics of the UGAMP GCM: Sensitivity to convective parametrization. Quarterly Journal of the Royal Meteorological Society, 1994, 120, 881-922.	2.7	111

#	Article	IF	CITATIONS
91	Relation between equilbrium evaporation and the saturation pressure budget. Boundary-Layer Meteorology, 1994, 71, 235-245.	2.3	16
92	Budget analysis of FIFE 1987 sonde data. Journal of Geophysical Research, 1994, 99, 3655.	3.3	73
93	Comparison between the land surface response of the ECMWF model and the FIFE-1987 data. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 975-1001.	2.7	84
94	Estimation of effective roughness length for heat and momentum from FIFE data. Atmospheric Research, 1993, 30, 251-261.	4.1	34
95	Tropical boundary layer equilibrium in the last ice age. Journal of Geophysical Research, 1992, 97, 2529-2534.	3.3	29
96	An equilibrium model for the coupled oceanâ€atmosphere boundary layer in the tropics. Journal of Geophysical Research, 1991, 96, 3151-3163.	3.3	15
97	The Density Temperature and the Dry and Wet Virtual Adiabats. Monthly Weather Review, 1991, 119, 169-175.	1.4	15
98	A Cloudiness Transition in a Marine Boundary Layer. Journals of the Atmospheric Sciences, 1990, 47, 1480-1497.	1.7	62
99	Air–Sea Interaction during an Extreme Cold Air Outbreak from the Eastern Coast of the United States. Monthly Weather Review, 1990, 118, 324-342.	1.4	64
100	Diurnal variation of California coastal stratocumulus from two days of boundary layer soundings. Tellus, Series A: Dynamic Meteorology and Oceanography, 1990, 42, 302-304.	1.7	35
101	Idealized model for stratocumulus cloud layer thickness. Tellus, Series A: Dynamic Meteorology and Oceanography, 1989, 41, 246-254.	1.7	0
102	Mean inversion strength of the convective boundary layer over the oceans. Quarterly Journal of the Royal Meteorological Society, 1989, 115, 997-998.	2.7	2
103	Idealized model for stratocumulus cloud layer thickness. Tellus, Series A: Dynamic Meteorology and Oceanography, 1989, 41A, 246-254.	1.7	3
104	Climatic Equilibrium of the Atmospheric Convective Boundary Layer over a Tropical Ocean. Journals of the Atmospheric Sciences, 1989, 46, 2621-2641.	1.7	227
105	Saturation Point Structure of Marine Stratocumulus Clouds. Journals of the Atmospheric Sciences, 1988, 45, 1156-1175.	1.7	24
106	Conserved Variable Analysis of the Convective Boundary Layer Thermodynamic Structure over the Tropical Oceans. Journals of the Atmospheric Sciences, 1987, 44, 83-99.	1.7	98
107	Thermodynamic Budget Diagrams for the Hurricane Subcloud Layer. Journals of the Atmospheric Sciences, 1987, 44, 842-849.	1.7	17
108	Thermodynamic constraint on the cloud liquid water feedback in climate models. Journal of Geophysical Research, 1987, 92, 8483-8485.	3.3	129

#	Article	IF	CITATIONS
109	A new convective adjustment scheme, Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 1986, 112, 693-709.	2.7	254
110	Vector Representation of Trade Cumulus Thermodynamic Fluxes. Monthly Weather Review, 1985, 113, 2173-2175.	1.4	1
111	Mixing Line Analysis of Clouds and Cloudy Boundary Layers. Journals of the Atmospheric Sciences, 1985, 42, 2751-2763.	1.7	59
112	A Linear Spectral Model of Tropical Mesoscale Systems: Sensitivity Studies. Journals of the Atmospheric Sciences, 1984, 41, 1704-1716.	1.7	10
113	Boundary Layer Thermodynamics of a High Plains Severe Storm. Monthly Weather Review, 1984, 112, 2199-2211.	1.4	45
114	Thermodynamics of Mixed Stratocumulus Layers: Saturation Point Budgets. Journals of the Atmospheric Sciences, 1983, 40, 2655-2670.	1.7	41
115	Saturation Point Analysis of Moist Convective Overturning. Journals of the Atmospheric Sciences, 1982, 39, 1484-1505.	1.7	183
116	Cloud Thermodynamic Models in Saturation Point Coordinates. Journals of the Atmospheric Sciences, 1982, 39, 2182-2191.	1.7	31
117	Convective Overturning and the Saturation Point. , 1982, , 117-133.		1
118	Convection in GATE. Reviews of Geophysics, 1981, 19, 541-576.	23.0	345
119	Model of the Thermodynamic Structure of the Trade-Wind Boundary Layer: Part I. Theoretical Formulation and Sensitivity Tests. Journals of the Atmospheric Sciences, 1979, 36, 73-89.	1.7	94
120	A Mesoscale Budget Study of Cumulus Convection. Monthly Weather Review, 1978, 106, 1317-1331.	1.4	17
121	Modeling Subcloud Layer Structure and Interaction with a Shallow Cumulus Layer. Journals of the Atmospheric Sciences, 1976, 33, 2363-2382.	1.7	62
122	The Thermodynamic Transformation of the Tropical Subcloud Layer by Precipitation and Downdrafts. Journals of the Atmospheric Sciences, 1976, 33, 1008-1020.	1.7	80
123	Parametric Interpretation of Trade-Wind Cumulus Budget Studies. Journals of the Atmospheric Sciences, 1975, 32, 1934-1945.	1.7	122
124	Thermodynamic Classification of Tropical Convective Soundings. Monthly Weather Review, 1974, 102, 760-764.	1.4	32
125	Further Comments on "A Comparison of the Equivalent Potential Temperature and the Static Energy― Journals of the Atmospheric Sciences, 1974, 31, 1713-1715.	1.7	28
126	A Review of the Tropical Boundary Layer and Cumulus Convection: Structure, Parameterization, and Modeling. Bulletin of the American Meteorological Society, 1974, 55, 1195-1205.	3.3	35

#	Article	IF	CITATIONS
127	Non-precipitating cumulus convection and its parameterization. Quarterly Journal of the Royal Meteorological Society, 1973, 99, 178-196.	2.7	375
128	Empirical Formula for Saturation Pseudoadiabats and Saturation Equivalent Potential Temperature. Journal of Applied Meteorology, 1973, 12, 731-732.	1.1	19
129	A Relationship Between Stratification, Cloud Depth, and Permitted Cloud Radii. Journal of Applied Meteorology, 1973, 12, 890-893.	1.1	2
130	The impact of clouds, land use and snow cover on climate in the Canadian Prairies. Advances in Science and Research, 0, 13, 37-42.	1.0	7
131	A Proposal for Communicating Science. Bulletin of the American Meteorological Society, 0, , 110610140626057.	3.3	0