Yuichiro Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8497352/publications.pdf Version: 2024-02-01

Ушениро Сно

#	Article	IF	CITATIONS
1	Resurfacing processes constrained by crater distribution on Ryugu. Icarus, 2022, 377, 114911.	2.5	6
2	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
3	Three-axial shape distributions of pebbles, cobbles and boulders smaller than a few meters on asteroid Ryugu. Icarus, 2022, 381, 115007.	2.5	1
4	Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nature Astronomy, 2022, 6, 214-220.	10.1	136
5	Site selection for the Hayabusa2 artificial cratering and subsurface material sampling on Ryugu. Planetary and Space Science, 2022, 219, 105519.	1.7	4
6	Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science, 2022, 377, 285-291.	12.6	39
7	Crater depth-to-diameter ratios on asteroid 162173 Ryugu. Icarus, 2021, 354, 114016.	2.5	12
8	Spectral characterization of the craters of Ryugu as observed by the NIRS3 instrument on-board Hayabusa2. Icarus, 2021, 357, 114253.	2.5	7
9	Collisional history of Ryugu's parent body from bright surface boulders. Nature Astronomy, 2021, 5, 39-45.	10.1	42
10	Thermally altered subsurface material of asteroid (162173) Ryugu. Nature Astronomy, 2021, 5, 246-250.	10.1	47
11	Alignment determination of the Hayabusa2 laser altimeter (LIDAR). Earth, Planets and Space, 2021, 73, .	2.5	3
12	Post-arrival calibration of Hayabusa2's optical navigation cameras (ONCs): Severe effects from touchdown events. Icarus, 2021, 360, 114353.	2.5	11
13	Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nature Astronomy, 2021, 5, 766-774.	10.1	30
14	Improved method of hydrous mineral detection by latitudinal distribution of 0.7-μm surface reflectance absorption on the asteroid Ryugu. Icarus, 2021, 360, 114348.	2.5	9
15	Geologic History and Crater Morphology of Asteroid (162173) Ryugu. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006572.	3.6	10
16	Optical design adopting tilted filters for reduction of stray light in planetary exploration cameras and other optics. , 2021, , .		0
17	Resurfacing processes on asteroid (162173) Ryugu caused by an artificial impact of Hayabusa2's Small Carry-on Impactor. Icarus, 2021, 366, 114530.	2.5	24
18	Opposition Observations of 162173 Ryugu: Normal Albedo Map Highlights Variations in Regolith Characteristics. Planetary Science Journal, 2021, 2, 177.	3.6	12

Уиісніко Сно

#	Article	IF	CITATIONS
19	Development of image texture analysis technique for boulder distribution measurements: Applications to asteroids Ryugu and Itokawa. Planetary and Space Science, 2021, 204, 105249.	1.7	6
20	High-resolution observations of bright boulders on asteroid Ryugu: 1. Size frequency distribution and morphology. Icarus, 2021, 369, 114529.	2.5	2
21	High-resolution observations of bright boulders on asteroid Ryugu: 2. Spectral properties. Icarus, 2021, 369, 114591.	2.5	5
22	Mars' atmospheric neon suggests volatile-rich primitive mantle. Icarus, 2021, 370, 114685.	2.5	7
23	Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nature Communications, 2021, 12, 5837.	12.8	23
24	YORP Effect on Asteroid 162173 Ryugu: Implications for the Dynamical History. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006863.	3.6	4
25	In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements. Earth, Planets and Space, 2021, 73, .	2.5	17
26	The spatial distribution of impact craters on Ryugu. Icarus, 2020, 338, 113527.	2.5	25
27	Hayabusa2 Landing Site Selection: Surface Topography of Ryugu and Touchdown Safety. Space Science Reviews, 2020, 216, 1.	8.1	17
28	Ne-Ar separation using a permeable membrane to measure Ne isotopes for future planetary explorations. Planetary and Space Science, 2020, 193, 105046.	1.7	1
29	Spin-driven evolution of asteroids' top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu. Icarus, 2020, 352, 113946.	2.5	28
30	Global photometric properties of (162173) Ryugu. Astronomy and Astrophysics, 2020, 639, A83.	5.1	37
31	Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov–Gerasimenko inferred from <i>in situ</i> observations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3178-3193.	4.4	11
32	Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368, 654-659.	12.6	158
33	An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368, 67-71.	12.6	183
34	<i>In Situ</i> Geochronology on Mars and the Development of Future Instrumentation. Astrobiology, 2019, 19, 1303-1314.	3.0	15
35	Multivariable statistical analysis of spectrophotometry and spectra of (162173) Ryugu as observed by JAXA Hayabusa2 mission. Astronomy and Astrophysics, 2019, 629, A13.	5.1	15
36	Boulder size and shape distributions on asteroid Ryugu. Icarus, 2019, 331, 179-191.	2.5	107

Уиісніко Сно

#	Article	IF	CITATIONS
37	The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 2019, 364, 272-275.	12.6	262
38	Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile. Science, 2019, 364, 268-272.	12.6	410
39	The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364, 252.	12.6	313
40	The Western Bulge of 162173 Ryugu Formed as a Result of a Rotationally Driven Deformation Process. Astrophysical Journal Letters, 2019, 874, L10.	8.3	30
41	The MASCOT landing area on asteroid (162173) Ryugu: Stereo-photogrammetric analysis using images of the ONC onboard the Hayabusa2 spacecraft. Astronomy and Astrophysics, 2019, 632, L4.	5.1	9
42	The descent and bouncing path of the Hayabusa2 lander MASCOT at asteroid (162173) Ryugu. Astronomy and Astrophysics, 2019, 632, L3.	5.1	18
43	Dating igneous rocks using the Potassium–Argon Laser Experiment (KArLE) instrument: A case study for ~380ÂMa basaltic rocks. Rapid Communications in Mass Spectrometry, 2018, 32, 1755-1765.	1.5	9
44	Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K–Ar Geochronology for Planetary Exploration. Applied Spectroscopy, 2017, 71, 1969-1981.	2.2	7
45	Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft. Space Science Reviews, 2017, 208, 17-31.	8.1	81
46	Experimental characterization of elastomeric O-rings as reusable seals for mass spectrometric measurements: Application to in situ K–Ar dating on Mars. Advances in Space Research, 2017, 60, 1453-1462.	2.6	2
47	An Investigation of Elemental Composition of Martian Satellites by Gamma-ray and Neutron Spectrometer. , 2016, , .		0
48	Conceptual Design of an In Situ K-Ar Isochron Dating Instrument for Future Mars Rover Missions. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2016, 14, Pk_89-Pk_94.	0.2	2
49	An in-situ K–Ar isochron dating method for planetary landers using a spot-by-spot laser-ablation technique. Planetary and Space Science, 2016, 128, 14-29.	1.7	16
50	High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K–Ar dating of planetary surfaces. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 106, 28-35.	2.9	17
51	Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period â^1⁄42 billion years ago. Geophysical Research Letters, 2012, 39, .	4.0	22
52	Shockâ€induced silicate vaporization: The role of electrons. Journal of Geophysical Research, 2012, 117, .	3.3	16