
Jianting Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496915/publications.pdf Version: 2024-02-01

Ιμαντινός Ζημ

#	Article	IF	CITATIONS
1	Streamflow Consumption vs. Climate Change in the Evolution of Discharge in the Tarim River Basin, Northwest China. Water (Switzerland), 2022, 14, 392.	2.7	2
2	Risk assessment of soil erosion in Central Asia under global warming. Catena, 2022, 212, 106056.	5.0	35
3	Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water (Switzerland), 2022, 14, 855.	2.7	8
4	Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. International Journal of Climatology, 2022, 42, 6665-6684.	3.5	30
5	Viscoplastic and pseudoplastic flows through fractal fractures. International Journal of Non-Linear Mechanics, 2022, 145, 104107.	2.6	1
6	Improvement of Ecological Risk Considering Heavy Metal in Soil and Groundwater Surrounding Electroplating Factories. Processes, 2022, 10, 1267.	2.8	6
7	Sensitivity analysis of greenhouse gas emissions at farm level: case study of grain and cash crops. Environmental Science and Pollution Research, 2022, 29, 82559-82573.	5.3	42
8	Convective and conductive heat transfer of creeping flow in a multi-particle system. International Journal of Thermal Sciences, 2021, 159, 106573.	4.9	4
9	Spatial variability of the groundwater exploitation potential in an arid alluvial-diluvial plain using GIS-based Dempster-Shafer theory. Quaternary International, 2021, 571, 127-135.	1.5	14
10	Multiple Wavelet Coherence to Evaluate Local Multivariate Relationships in a Groundwater System. Ground Water, 2021, 59, 443-452.	1.3	5
11	Significance of Mass–Concentration Relation on the Contaminant Source Depletion in the Nonaqueous Phase Liquid (NAPL) Contaminated Zone. Transport in Porous Media, 2021, 137, 399-416.	2.6	2
12	Spatial and Temporal Variability of Drought Patterns over the Continental United States from Observations and Regional Climate Models. Journal of Meteorological Research, 2021, 35, 295-312.	2.4	4
13	Changes of Streamflow Caused by Early Start of Growing Season in Nevada, United States. Water (Switzerland), 2021, 13, 1067.	2.7	0
14	Forecast and uncertainty analysis of extreme precipitation in China from ensemble of multiple climate models. Theoretical and Applied Climatology, 2021, 145, 787-805.	2.8	4
15	Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena, 2021, 200, 105129.	5.0	50
16	Evaluating the performance of regional climate models to simulate the US drought and its connection with El Nino Southern Oscillation. Theoretical and Applied Climatology, 2021, 145, 1259-1273.	2.8	6
17	Projections of desertification trends in Central Asia under global warming scenarios. Science of the Total Environment, 2021, 781, 146777.	8.0	51
18	Towards Sustainable Farm Production System: A Case Study of Corn Farming. Sustainability, 2021, 13, 9243.	3.2	17

JIANTING ZHU

#	Article	IF	CITATIONS
19	Spatiotemporal Analysis of Meteorological and Hydrological Droughts and Their Propagations. Water (Switzerland), 2021, 13, 2237.	2.7	31
20	Variations in water use strategies of sand-binding vegetation along a precipitation gradient in sandy regions, northern China. Journal of Hydrology, 2021, 600, 126539.	5.4	13
21	Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Science of the Total Environment, 2021, 796, 149055.	8.0	67
22	Effective hydraulic conductivity of discrete fracture network with aperture-length correlation. Geosciences Journal, 2020, 24, 329-338.	1.2	7
23	Multimodel ensemble projection of meteorological drought scenarios and connection with climate based on spectral analysis. International Journal of Climatology, 2020, 40, 3360-3379.	3.5	15
24	Characterization of sudden and sustained base flow jump hydrologic behaviour in the humid seasonal tropics of the Panama Canal Watershed. Hydrological Processes, 2020, 34, 569-582.	2.6	7
25	Trade-offs and synergies in ecosystem service values of inland lake wetlands in Central Asia under land use/cover change: A case study on Ebinur Lake, China. Global Ecology and Conservation, 2020, 24, e01253.	2.1	27
26	Impact of yield stress and fractal characteristics on the flow of Bingham fluid through fracture network. Journal of Petroleum Science and Engineering, 2020, 195, 107637.	4.2	6
27	Unsaturated cell model of effective thermal conductivity of soils. SN Applied Sciences, 2020, 2, 1.	2.9	4
28	Coupling effect of power-law fluid properties and scaled fractal characteristics on flow through fractured media. Physica A: Statistical Mechanics and Its Applications, 2020, 559, 125073.	2.6	2
29	Starting pressure head gradient and flow of Bingham plastics through a scaled fractal fracture network. International Journal of Non-Linear Mechanics, 2020, 126, 103577.	2.6	2
30	Flow of power-law fluid through fractal discrete fracture network. European Physical Journal Plus, 2020, 135, 1.	2.6	3
31	Assessment of soil conservation services of four river basins in Central Asia under global warming scenarios. Geoderma, 2020, 375, 114533.	5.1	26
32	Impact of fractal characteristics on evaporation and infiltration in unsaturated heterogeneous soils. Hydrological Sciences Journal, 2020, 65, 1872-1878.	2.6	3
33	Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique. Journal of Hydrology, 2020, 585, 124746.	5.4	25
34	Equivalent Permeability of Fractured Media Incorporating Tortuosity and Nonlinear Flow. Transport in Porous Media, 2020, 132, 741-760.	2.6	3
35	Impact of Size Distribution of Cell Model on the Effective Thermal Conductivity of Saturated Porous Media. International Journal of Thermophysics, 2020, 41, 1.	2.1	6
36	Non-linear flow reduction factor and effective permeability of fractal fracture network. Journal of Natural Gas Science and Engineering, 2019, 66, 138-147.	4.4	7

Jianting Zhu

#	Article	IF	CITATIONS
37	Sensitivity of advective contaminant travel time to the soil hydraulic parameters in unsaturated heterogeneous soils. Journal of Hydrology, 2019, 576, 137-149.	5.4	0
38	Fractal nature of groundwater level fluctuations affected by riparian zone vegetation water use and river stage variations. Scientific Reports, 2019, 9, 15383.	3.3	6
39	Impact of scaling break and fracture orientation on effective permeability of fractal fracture network. SN Applied Sciences, 2019, 1, 1.	2.9	3
40	Sensitivity of contaminant travel time to the combined effect of porosity and hydraulic conductivity. Hydrogeology Journal, 2019, 27, 615-623.	2.1	2
41	Using time compression approximation to determine actual infiltration rate from variable rainfall events. Hydrology Research, 2019, 50, 155-165.	2.7	1
42	Infiltration Model Based on Traveling Characteristics of Wetting Front. Soil Science Society of America Journal, 2018, 82, 45-55.	2.2	10
43	Prediction of unsaturated flow and water backfill during infiltration in layered soils. Journal of Hydrology, 2018, 557, 509-521.	5.4	13
44	Modeling Infiltration and Runoff with Surface Crust under Unsteady Rainfalls. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	1.9	4
45	New Approach for Simulating Groundwater Flow in Discrete Fracture Network. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	1.9	5
46	Effective permeability of fractal fracture rocks: Significance of turbulent flow and fractal scaling. International Journal of Heat and Mass Transfer, 2018, 116, 549-556.	4.8	35
47	Simulation of groundwater exchange between an unconfined aquifer and a discrete fracture network with laminar and turbulent flows. Journal of Hydrology, 2018, 562, 468-476.	5.4	10
48	Land Useâ€Dependent Preferential Flow Paths Affect Hydrological Response of Steep Tropical Lowland Catchments With Saprolitic Soils. Water Resources Research, 2018, 54, 5551-5566.	4.2	20
49	Projections of actual evapotranspiration under the 1.5â€ [−] °C and 2.0â€ [−] °C global warming scenarios in sandy areas in northern China. Science of the Total Environment, 2018, 645, 1496-1508.	8.0	29
50	Effective aperture and orientation of fractal fracture network. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 27-37.	2.6	12
51	On bias correction in drought frequency analysis based on climate models. Climatic Change, 2017, 140, 361-374.	3.6	10
52	Infiltration model in sloping layered soils and guidelines for model parameter estimation. Hydrological Sciences Journal, 2017, 62, 2222-2237.	2.6	14
53	Earthworms and tree roots: A model study of the effect of preferential flow paths on runoff generation and groundwater recharge in steep, saprolitic, tropical lowland catchments. Water Resources Research, 2017, 53, 5400-5419.	4.2	35
54	Direct Hydraulic Parameter and Function Estimation for Diverse Soil Types Under Infiltration and Evaporation. Transport in Porous Media, 2017, 116, 797-823.	2.6	1

JIANTING ZHU

#	Article	IF	CITATIONS
55	The soil moisture velocity equation. Journal of Advances in Modeling Earth Systems, 2017, 9, 1473-1487.	3.8	17
56	A New Visual Method to Determine Infiltration Rate from Infiltration Capacity Models. Journal of Natural Resources and Life Sciences Education, 2016, 45, nse2016.07.0020.	1.5	2
57	An explicit approach to capture diffusive effects in finite water-content method for solving vadose zone flow. Journal of Hydrology, 2016, 535, 270-281.	5.4	4
58	Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone. Journal of Contaminant Hydrology, 2016, 192, 158-164.	3.3	7
59	Temporal Dynamics of NAPL Source Zone Strength: Relationship between Groundwater Flux and Contaminant Mass Discharge. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, 04016006.	2.0	2
60	Analysis of effective Green–Ampt hydraulic parameters for vertically layered soils. Journal of Hydrology, 2016, 538, 705-712.	5.4	27
61	Assessing the impact of climate variability on runoff using a new linear runoff generation model. Hydrological Sciences Journal, 2016, 61, 1040-1053.	2.6	1
62	Validation of finite water ontent vadose zone dynamics method using column experiments with a moving water table and applied surface flux. Water Resources Research, 2015, 51, 3108-3125.	4.2	14
63	Anisotropy of Unsaturated Layered Soils: Impact of Layer Composition and Domain Size. Soil Science Society of America Journal, 2015, 79, 487-494.	2.2	9
64	Dissolution Dynamics and Temporal Variations of Groundwater Flux in the Subsurface Source Zone of Nonaqueous Phase Liquids. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, 04014032.	2.0	2
65	A new general 1â€Ð vadose zone flow solution method. Water Resources Research, 2015, 51, 4282-4300.	4.2	37
66	Parametric uncertainty and sensitivity analysis of hydrodynamic processes for a large shallow freshwater lake. Hydrological Sciences Journal, 2015, 60, 1078-1095.	2.6	26
67	Shrub spatial organization and partitioning of evaporation and transpiration in arid environments. Ecohydrology, 2015, 8, 1218-1228.	2.4	5
68	Spatial and Temporal Scale Effect in Simulating Hydrologic Processes in a Watershed. Journal of Hydrologic Engineering - ASCE, 2014, 19, 99-107.	1.9	21
69	Effective Approach to Calculate Groundwater Return Flow to a River from Irrigation Areas. Journal of Irrigation and Drainage Engineering - ASCE, 2014, 140, 04013025.	1.0	2
70	Impact of Climate Change on Extreme Rainfall across the United States. Journal of Hydrologic Engineering - ASCE, 2013, 18, 1301-1309.	1.9	30
71	Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models. Climatic Change, 2013, 118, 469-485.	3.6	36
72	Unsaturated Hydraulic Conductivity of Repeatedly Layered Soil Structures. Soil Science Society of America Journal, 2012, 76, 28-35.	2.2	5

JIANTING ZHU

#	Article	IF	CITATIONS
73	Effect of Layered Structure on Anisotropy of Unsaturated Soils. Soil Science, 2012, 177, 139-146.	0.9	6
74	Soil hydraulic properties for moisture redistribution in a large-scale heterogeneous landscape. Hydrological Sciences Journal, 2012, 57, 1196-1206.	2.6	3
75	Soil heterogeneity in Mojave Desert shrublands: Biotic and abiotic processes. Water Resources Research, 2012, 48, .	4.2	22
76	Impacts of riparian zone plant water use on temporal scaling of groundwater systems. Hydrological Processes, 2012, 26, 1352-1360.	2.6	17
77	Sensitivity of advective travel time of contaminants to correlated formation porosities. Hydrogeology Journal, 2012, 20, 135-141.	2.1	6
78	Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters. Journal of Hydrology, 2011, 397, 238-249.	5.4	40
79	Sensitivity of Solute Advective Travel Time to Porosities of Hydrogeologic Units. Ground Water, 2010, 48, 442-447.	1.3	11
80	Sensitivity of Unlined Canal Seepage to Hydraulic Properties of Polyacrylamideâ€Treated Soil. Soil Science Society of America Journal, 2009, 73, 695-703.	2.2	4
81	Reducing Saturated Hydraulic Conductivity of Sandy Soils with Polyacrylamide. Soil Science Society of America Journal, 2009, 73, 13-20.	2.2	36
82	Sensitivity and Uncertainty of Groundâ€Water Discharge Estimates for Semiarid Shrublands ¹ . Journal of the American Water Resources Association, 2009, 45, 641-653.	2.4	1
83	Numerical Evaluation of Uncertainty in Water Retention Parameters and Effect on Predictive Uncertainty. Vadose Zone Journal, 2009, 8, 158-166.	2.2	20
84	Spatial structure of hydraulic properties from canopy to interspace in the Mojave Desert. Geophysical Research Letters, 2008, 35, .	4.0	25
85	Equivalent Parallel and Perpendicular Unsaturated Hydraulic Conductivities: Arithmetic Mean or Harmonic Mean?. Soil Science Society of America Journal, 2008, 72, 1226-1233.	2.2	11
86	Effective Hydraulic Parameters in Horizontally and Vertically Heterogeneous Soils for Steady-State Land–Atmosphere Interaction. Journal of Hydrometeorology, 2007, 8, 715-729.	1.9	50
87	Simulation of field injection experiments in heterogeneous unsaturated media using cokriging and artificial neural network. Water Resources Research, 2007, 43, .	4.2	26
88	Effective scaling factor for transient infiltration in heterogeneous soils. Journal of Hydrology, 2006, 319, 96-108.	5.4	31
89	On the Effective Averaging Schemes of Hydraulic Properties at the Landscape Scale. Vadose Zone Journal, 2006, 5, 308-316.	2.2	26
90	Correspondence and Upscaling of Hydraulic Functions for Steadyâ€State Flow in Heterogeneous Soils. Vadose Zone Journal. 2004. 3. 527-533.	2.2	34

Jianting Zhu

#	Article	IF	CITATIONS
91	Simple screening models of NAPL dissolution in the subsurface. Journal of Contaminant Hydrology, 2004, 72, 245-258.	3.3	82
92	Approximate solutions of non-Newtonian flows over a swarm of bubbles. International Journal of Multiphase Flow, 2004, 30, 1271-1278.	3.4	8
93	Soil Hydraulic Parameter Upscaling for Steady‣tate Flow with Root Water Uptake. Vadose Zone Journal, 2004, 3, 1464-1470.	2.2	18
94	Effective hydraulic parameters for steady state vertical flow in heterogeneous soils. Water Resources Research, 2003, 39, .	4.2	44
95	Analytical solutions for steady state vertical infiltration. Water Resources Research, 2002, 38, 20-1-20-5.	4.2	26
96	Upscaling of soil hydraulic properties for steady state evaporation and infiltration. Water Resources Research, 2002, 38, 17-1-17-13.	4.2	46
97	Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils: A Numerical Study. Vadose Zone Journal, 2002, 1, 261-272.	2.2	25
98	Spatial Averaging of van Genuchten Hydraulic Parameters for Steadyâ€ S tate Flow in Heterogeneous Soils: A Numerical Study. Vadose Zone Journal, 2002, 1, 261-272.	2.2	70
99	Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous Soils. Vadose Zone Journal, 2002, 1, 261.	2.2	8
100	A note on slow non-Newtonian flows over an ensemble of spherical bubbles. Chemical Engineering Science, 2001, 56, 2237-2241.	3.8	16
101	A note on statistical analysis of the rate coefficient of nonaqueous phase liquid dissolution in porous media. Water Resources Research, 2000, 36, 1347-1352.	4.2	4
102	Estimation of groundwater recharge using multiple climate models in Bayesian frameworks. Journal of Water and Climate Change, 0, , .	2.9	2