Lingjuan He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496528/publications.pdf

Version: 2024-02-01

147801 128289 4,110 60 31 60 h-index citations g-index papers 62 62 62 6316 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Extension of Endocardium-Derived Vessels Generate Coronary Arteries in Neonates. Circulation Research, 2022, 130, 352-365.	4.5	14
2	Genetic Proliferation Tracing Reveals a Rapid Cell Cycle Withdrawal in Preadolescent Cardiomyocytes. Circulation, 2022, 145, 410-412.	1.6	9
3	Dual Cre and Dre recombinases mediate synchronized lineage tracing and cell subset ablation inÂvivo. Journal of Biological Chemistry, 2022, 298, 101965.	3.4	4
4	Lineage tracing clarifies the cellular origin of tissue-resident macrophages in the developing heart. Journal of Cell Biology, 2022, 221, .	5.2	12
5	Generation of <scp><i>Piezo1â€CreER</i></scp> transgenic mice for visualization and lineage tracing of mechanical force responsive cells in vivo. Genesis, 2022, 60, e23476.	1.6	3
6	Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science, 2021, 371, .	12.6	128
7	MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature, 2021, 592, 606-610.	27.8	53
8	Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nature Metabolism, 2021, 3, 352-365.	11.9	35
9	Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nature Communications, 2021, 12, 2863.	12.8	25
10	A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell, 2021, 28, 1160-1176.e7.	11.1	74
11	Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nature Communications, 2021, 12, 5784.	12.8	33
12	The Formation of Coronary Vessels in Cardiac Development and Disease. Cold Spring Harbor Perspectives in Biology, 2020, 12, a037168.	5.5	12
13	Arterial Sca1+ Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell, 2020, 26, 81-96.e4.	11.1	98
14	Triple-cell lineage tracing by a dual reporter on a single allele. Journal of Biological Chemistry, 2020, 295, 690-700.	3.4	16
15	In Vivo AAV-CRISPR/Cas9–Mediated Gene Editing Ameliorates Atherosclerosis in Familial Hypercholesterolemia. Circulation, 2020, 141, 67-79.	1.6	124
16	Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation. Circulation, 2020, 142, 275-291.	1.6	88
17	Genetic Fate Mapping of Transient Cell Fate Reveals N-Cadherin Activity and Function in Tumor Metastasis. Developmental Cell, 2020, 54, 593-607.e5.	7.0	70
18	Resident endothelial cells generate hepatocytes through cell fusion in adult mouse liver. Journal of Genetics and Genomics, 2020, 47, 225-228.	3.9	6

#	Article	IF	Citations
19	Generation of a selfâ€eleaved inducible Cre recombinase for efficient temporal genetic manipulation. EMBO Journal, 2020, 39, e102675.	7.8	22
20	Bi-directional differentiation of single bronchioalveolar stem cells during lung repair. Cell Discovery, 2020, 6, 1.	6.7	587
21	A genetic system for tissue-specific inhibition of cell proliferation. Development (Cambridge), 2020, 147, .	2.5	10
22	Triple-cell lineage tracing by a dual reporter on a single allele. Journal of Biological Chemistry, 2020, 295, 690-700.	3.4	14
23	Reassessment of c-Kit ⁺ Cells for Cardiomyocyte Contribution in Adult Heart. Circulation, 2019, 140, 164-166.	1.6	40
24	Genetic Tracing Identifies Early Segregation of the Cardiomyocyte and Nonmyocyte Lineages. Circulation Research, 2019, 125, 343-355.	4.5	29
25	Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nature Genetics, 2019, 51, 728-738.	21.4	231
26	Lineage Tracing Reveals the Bipotency of SOX9+ Hepatocytes during Liver Regeneration. Stem Cell Reports, 2019, 12, 624-638.	4.8	65
27	Genetic Fate Mapping Defines the Vascular Potential of Endocardial Cells in the Adult Heart. Circulation Research, 2018, 122, 984-993.	4.5	65
28	Genetic targeting of Purkinje fibres by Sema3a-CreERT2. Scientific Reports, 2018, 8, 2382.	3.3	12
29	Genetic Lineage Tracing of Nonmyocyte Population by Dual Recombinases. Circulation, 2018, 138, 793-805.	1.6	163
30	Fate Mapping of Sca1 + Cardiac Progenitor Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2967-2969.	1.6	42
31	Response by Zhao et al to Letter Regarding Article, "Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts― Circulation Research, 2018, 123, e67-e68.	4.5	3
32	Genetic lineage tracing of resident stem cells by DeaLT. Nature Protocols, 2018, 13, 2217-2246.	12.0	17
33	Apj+ Vessels Drive Tumor Growth and Represent a Tractable Therapeutic Target. Cell Reports, 2018, 25, 1241-1254.e5.	6.4	26
34	Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts. Circulation Research, 2018, 123, e21-e31.	4.5	24
35	The Development and Regeneration of Coronary Arteries. Current Cardiology Reports, 2018, 20, 54.	2.9	12
36	Genetic Targeting of Organ-Specific Blood Vessels. Circulation Research, 2018, 123, 86-99.	4.5	46

#	Article	IF	Citations
37	Dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme. Development (Cambridge), 2018, 145, .	2.5	35
38	Embryonic senescent cells re-enter cell cycle and contribute to tissues after birth. Cell Research, 2018, 28, 775-778.	12.0	37
39	Genetic tracing of hepatocytes in liver homeostasis, injury, and regeneration. Journal of Biological Chemistry, 2017, 292, 8594-8604.	3.4	24
40	Cardiomyocyte proliferation: remove brakes and push accelerators. Cell Research, 2017, 27, 959-960.	12.0	25
41	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	12.8	67
42	Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Research, 2017, 27, 1157-1177.	12.0	39
43	Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 2017, 23, 1488-1498.	30.7	188
44	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	8.2	146
45	Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls. Circulation Research, 2016, 118, 1880-1893.	4.5	131
46	Lack of FADD in Tie-2 expressing cells causes RIPK3-mediated embryonic lethality. Cell Death and Disease, 2016, 7, e2351-e2351.	6.3	6
47	Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nature Communications, 2016, 7, 13369.	12.8	87
48	Genetic lineage tracing discloses arteriogenesis as the main mechanism for collateral growth in the mouse heart. Cardiovascular Research, 2016, 109, 419-430.	3.8	40
49	Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Research, 2016, 26, 119-130.	12.0	122
50	Genetic lineage tracing identifies endocardial origin of liver vasculature. Nature Genetics, 2016, 48, 537-543.	21.4	84
51	GATA4 regulates Fgf16 to promote heart repair after injury. Development (Cambridge), 2016, 143, 936-49.	2.5	79
52	Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochemical and Biophysical Research Communications, 2016, 471, 430-436.	2.1	10
53	Endocardium Contributes to Cardiac Fat. Circulation Research, 2016, 118, 254-265.	4.5	42
54	Genetic targeting of sprouting angiogenesis using Apln-CreER. Nature Communications, 2015, 6, 6020.	12.8	111

#	Article	IF	CITATIONS
55	c-kit+ cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nature Medicine, 2015, 21, 866-868.	30.7	63
56	BAF200 Is Required for Heart Morphogenesis and Coronary Artery Development. PLoS ONE, 2014, 9, e109493.	2.5	33
57	Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion. Journal of Biological Chemistry, 2014, 289, 18681-18692.	3.4	136
58	De novo formation of a distinct coronary vascular population in neonatal heart. Science, 2014, 345, 90-94.	12.6	181
59	Fabp4â€Cre <scp>ER</scp> lineage tracing revealstwo distinctive coronary vascular populations. Journal of Cellular and Molecular Medicine, 2014, 18, 2152-2156.	3.6	29
60	Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Research, 2013, 23, 1075-1090.	12.0	176