Christina M Tringides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Advanced Materials, 2022, 34, e2107207.	21.0	21
2	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	27.5	22
3	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	31.5	144
4	Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. Acta Biomaterialia, 2021, 135, 689-704.	8.3	13
5	Mechanical Checkpoint Regulates Monocyte Differentiation in Fibrotic Matrix. Blood, 2021, 138, 2539-2539.	1.4	5
6	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	27.8	1,045
7	Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19, 1244-1252.	27.5	99
8	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	14.9	204
9	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	7.1	124
10	Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Science Translational Medicine, 2019, 11, .	12.4	47
11	Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 2018, 17, 761-772.	27.5	352
12	Multicomponent Injectable Hydrogels for Antigen‧pecific Tolerogenic Immune Modulation. Advanced Healthcare Materials, 2017, 6, 1600773.	7.6	79
13	Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mechanics Letters, 2017, 15, 63-69.	4.1	26
14	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	27.5	1,650
15	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	7.6	50
16	Injectable, Poreâ€Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Advanced Healthcare Materials, 2015, 4, 2677-2687.	7.6	92
17	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.	12.8	637
18	Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nature Biotechnology, 2015, 33, 277-284.	17.5	532

#	Article	IF	CITATIONS
19	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	27.5	689
20	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	11.4	140
21	Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.	27.8	4,089
22	Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012, 37, 106-126.	24.7	5,658
23	Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20, 45-53.	11.4	2,025