Christina M Tringides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8496336/publications.pdf

Version: 2024-02-01

23 papers 17,745 citations

361413 20 h-index 642732 23 g-index

24 all docs

24 docs citations

times ranked

24

22859 citing authors

#	Article	IF	CITATIONS
1	Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012, 37, 106-126.	24.7	5,658
2	Highly stretchable and tough hydrogels. Nature, 2012, 489, 133-136.	27.8	4,089
3	Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20, 45-53.	11.4	2,025
4	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	27.5	1,650
5	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	27.8	1,045
6	Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nature Materials, 2014, 13, 970-978.	27.5	689
7	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6, 6364.	12.8	637
8	Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nature Biotechnology, 2015, 33, 277-284.	17.5	532
9	Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 2018, 17, 761-772.	27. 5	352
10	Biomaterials Functionalized with MSC Secreted Extracellular Vesicles and Soluble Factors for Tissue Regeneration. Advanced Functional Materials, 2020, 30, 1909125.	14.9	204
11	Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nature Nanotechnology, 2021, 16, 1019-1029.	31.5	144
12	Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials, 2014, 35, 6850-6858.	11.4	140
13	Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15392-15397.	7.1	124
14	Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19, 1244-1252.	27.5	99
15	Injectable, Poreâ€Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Advanced Healthcare Materials, 2015, 4, 2677-2687.	7.6	92
16	Multicomponent Injectable Hydrogels for Antigen‧pecific Tolerogenic Immune Modulation. Advanced Healthcare Materials, 2017, 6, 1600773.	7.6	79
17	Switchable Release of Entrapped Nanoparticles from Alginate Hydrogels. Advanced Healthcare Materials, 2015, 4, 1634-1639.	7.6	50
18	Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Science Translational Medicine, 2019, 11, .	12.4	47

#	Article	IF	CITATIONS
19	Engineering reversible elasticity in ductile and brittle thin films supported by a plastic foil. Extreme Mechanics Letters, 2017, 15, 63-69.	4.1	26
20	Mechanical checkpoint regulates monocyte differentiation in fibrotic niches. Nature Materials, 2022, 21, 939-950.	27.5	22
21	Materials for Implantable Surface Electrode Arrays: Current Status and Future Directions. Advanced Materials, 2022, 34, e2107207.	21.0	21
22	Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. Acta Biomaterialia, 2021, 135, 689-704.	8.3	13
23	Mechanical Checkpoint Regulates Monocyte Differentiation in Fibrotic Matrix. Blood, 2021, 138, 2539-2539.	1.4	5