
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495449/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing Electrochemistry at the Nanoscale: In Situ TEM and STM Characterizations of Conducting Filaments in Memristive Devices. Kluwer International Series in Electronic Materials: Science and Technology, 2022, , 87-120.	0.5	0
2	Initial electrical properties of tantalum oxide resistive memories influenced by oxygen defect concentrations. Japanese Journal of Applied Physics, 2021, 60, SCCE03.	1.5	1
3	Charge-offset stability of single-electron devices based on single-layered Fe nanodot array. AIP Advances, 2021, 11, .	1.3	4
4	Periodic Coulomb blockade oscillations observed in single-layered Fe nanodot array. Thin Solid Films, 2020, 704, 138012.	1.8	7
5	Stable and Tunable Current-Induced Phase Transition in Epitaxial Thin Films of Ca2RuO4. ACS Applied Materials & Interfaces, 2020, 12, 28368-28374.	8.0	7
6	Initial states and analog switching behaviors of two major tantalum oxide resistive memories. Japanese Journal of Applied Physics, 2020, 59, 044004.	1.5	4
7	Double-gate single-electron devices formed by single-layered Fe nanodot array. , 2020, , .		0
8	Filamentary switching of ReRAM investigated by in-situ TEM. Japanese Journal of Applied Physics, 2020, 59, SG0803.	1.5	3
9	Initialization process of Cu-based WO _{<i>x</i>} conductive bridge RAM investigated via in situ transmission electron microscopy. Japanese Journal of Applied Physics, 2020, 59, SIIE01.	1.5	0
10	Tunnel magnetocapacitance in Fe/MgF2 single nanogranular layered films. Applied Physics Letters, 2020, 116, .	3.3	2
11	Controlled Current Transport in Pt/Nb:SrTiO ₃ Junctions via Insertion of Uniform Thin Layers of TaO _x . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900136.	2.4	1
12	Si Electron Nano-Aspirator towards Emerging Hydro-Electronics. , 2019, , .		1
13	EELS Analysis of Oxygen Scavenging Effect in a Resistive Switching Structure of Pt/Ta/SrTiO3/Pt. MRS Advances, 2018, 3, 1925-1930.	0.9	1
14	Smooth Interfacial Scavenging for Resistive Switching Oxide via the Formation of Highly Uniform Layers of Amorphous TaO _{<i>x</i>} . ACS Applied Materials & Interfaces, 2018, 10, 5609-5617.	8.0	22
15	Electron aspirator using electron–electron scattering in nanoscale silicon. Nature Communications, 2018, 9, 4813.	12.8	5
16	Detection of single holes generated by impact ionization in silicon. Applied Physics Letters, 2018, 113, 163103.	3.3	0
17	Ultrahigh-Frequency Characteristics of Single-Electron Transistor. , 2018, , .		6
18	Oxygen Distribution around Filament in Ta-O Resistive RAM Fabricated Using 40 nm CMOS Technology. , 2018, , .		2

2

#	Article	IF	CITATIONS
19	EELS Analysis of Oxygen Scavenging Effect in a Resistive Switching Structure of Pt/Ta/SrTiO3/Pt – CORRIGENDUM. MRS Advances, 2018, 3, 2075-2075.	0.9	Ο
20	In-situ TEM of Nanoscale ReRAM Devices. Vacuum and Surface Science, 2018, 61, 766-771.	0.1	1
21	Probing electrochemistry at the nanoscale: in situ TEM and STM characterizations of conducting filaments in memristive devices. Journal of Electroceramics, 2017, 39, 73-93.	2.0	28
22	Evaluation of multilevel memory capability of ReRAM using Ta <inf>2</inf> O <inf>5</inf> insulator and different electrode materials. , 2017, , .		0
23	Associative search using pseudo-analog memristors. , 2017, , .		Ο
24	Investigation on Switching Operation in Resistive RAM Using In-Situ TEM. Springer Proceedings in Physics, 2017, , 205-214.	0.2	0
25	Single-Electron Logic Devices. , 2017, , 281-304.		0
26	Switching of Cu/MoO <i>_x</i> /TiN CBRAM at MoO <i>_x</i> /TiN interface. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 306-310.	1.8	17
27	Spike-based time-domain weighted-sum calculation using nanodevices for low power operation. , 2016, , \cdot		6
28	Capacitance evaluation of compact silicon triple quantum dots by simultaneous gate voltage sweeping. Journal of Applied Physics, 2016, 120, 234502.	2.5	2
29	Analog memory characteristics of 1T1R MoOx resistive random access memory. , 2016, , .		2
30	Evaluation of the origin of excited states appeared in small Si single-electron transistors. , 2016, , .		0
31	Microstructural transitions in resistive random access memory composed of molybdenum oxide with copper during switching cycles. Nanoscale, 2016, 8, 14754-14766.	5.6	17
32	Silicon nanodisk array with a fin field-effect transistor for time-domain weighted sum calculation toward massively parallel spiking neural networks. Applied Physics Express, 2016, 9, 034201.	2.4	14
33	Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM. Scientific Reports, 2015, 5, 17103.	3.3	60
34	Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor. Journal of Applied Physics, 2015, 118, .	2.5	6
35	Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire. AIP Advances, 2015, 5, .	1.3	6
36	Coupling capacitance between double quantum dots tunable by the number of electrons in Si quantum dots. Journal of Applied Physics, 2015, 117, .	2.5	6

#	Article	IF	CITATIONS
37	Visualization of Conductive Filament during Write and Erase Cycles on Nanometer-Scale ReRAM Achieved by In-Situ TEM. , 2015, , .		6
38	Highly functional three-terminal nanodot array device with almost independent input gates. , 2014, , .		0
39	Tunable coupling capacitance of double-quantum-dot single-electron transistor with multiple gates. , 2014, , .		Ο
40	Real-time resistive switching of Cu/MoOx ReRAM observed in transmission electron microscope. , 2014, , .		1
41	Filament formation and erasure in molybdenum oxide during resistive switching cycles. Applied Physics Letters, 2014, 105, .	3.3	41
42	In-situ TEM observation of ReRAM switching. , 2014, , .		0
43	Development of TEM Holder Generating In-Plane Magnetic Field Used for <i>In-Situ</i> TEM Observation. Materials Transactions, 2014, 55, 403-409.	1.2	22
44	Preparation of resistance random access memory samples for in situ transmission electron microscopy experiments. Thin Solid Films, 2013, 533, 48-53.	1.8	20
45	In-situ transmission electron microscopy of conductive filaments in NiO resistance random access memory and its analysis. Journal of Applied Physics, 2013, 113, 083701.	2.5	22
46	Multifunctional Logic Gate by Means of Nanodot Array with Different Arrangements. Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	0
47	In-Situ Transmission Electron Microscopy Observation of Electromigration in Au Thin Wires. Journal of Nanoscience and Nanotechnology, 2012, 12, 8741-8745.	0.9	О
48	Effect of Arrangement of Input Gates on Logic Switching Characteristics of Nanodot Array Device. IEICE Transactions on Electronics, 2012, E95.C, 865-870.	0.6	2
49	Analysis of resistance switching and conductive filaments inside Cu-Ge-S using in situ transmission electron microscopy. Journal of Materials Research, 2012, 27, 886-896.	2.6	19
50	High-frequency properties of Si single-electron transistor. , 2012, , .		1
51	The Observation of "Conduction Spot―on NiO Resistance Random Access Memory. Japanese Journal of Applied Physics, 2011, 50, 081101.	1.5	15
52	I-V measurement of NiO nanoregion during observation by transmission electron microscopy. Journal of Applied Physics, 2011, 109, 053702.	2.5	25
53	<i>In situ</i> transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Applied Physics Letters, 2011, 98, .	3.3	76
54	Si Nanodot Device Fabricated by Thermal Oxidation and their Applications. Key Engineering Materials, 2011, 470, 175-183.	0.4	0

#	Article	IF	CITATIONS
55	The Observation of "Conduction Spot―on NiO Resistance Random Access Memory. Japanese Journal of Applied Physics, 2011, 50, 081101.	1.5	10
56	Fabrication of double-dot single-electron transistor in silicon nanowire. Thin Solid Films, 2010, 518, S186-S189.	1.8	7
57	Single-Electron Device With Si Nanodot Array and Multiple Input Gates. IEEE Nanotechnology Magazine, 2009, 8, 535-541.	2.0	13
58	Silicon Single-Electron Devices. Nanostructure Science and Technology, 2009, , 125-172.	0.1	23
59	Full Adder Operation Based on Si Nanodot Array Device with Multiple Inputs and Outputs. International Journal of Nanotechnology and Molecular Computation, 2009, 1, 58-69.	0.3	2
60	Charge transport in boron-doped nano MOSFETs: Towards single-dopant electronics. Applied Surface Science, 2008, 254, 6252-6256.	6.1	6
61	Tunnel current measurement of MgO and MgO/Fe/MgO nanoregions during TEM observation. Superlattices and Microstructures, 2008, 44, 633-640.	3.1	7
62	Silicon nanodot-array device with multiple gates. Materials Science in Semiconductor Processing, 2008, 11, 175-178.	4.0	5
63	Silicon single-charge transfer devices. Journal of Physics and Chemistry of Solids, 2008, 69, 702-707.	4.0	2
64	Full adder operation based on Si nanodot array device. , 2008, , .		0
65	Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability. Journal of Applied Physics, 2008, 104, .	2.5	43
66	Long Retention of Gain-Cell Dynamic Random Access Memory With Undoped Memory Node. IEEE Electron Device Letters, 2007, 28, 48-50.	3.9	6
67	Infrared detection with silicon nano-field-effect transistors. Applied Physics Letters, 2007, 90, 223108.	3.3	17
68	Charge offset stability in tunable-barrier Si single-electron tunneling devices. Applied Physics Letters, 2007, 90, 033507.	3.3	34
69	Conductance modulation by individual acceptors in Si nanoscale field-effect transistors. Applied Physics Letters, 2007, 90, 102106.	3.3	90
70	Intersubband Scattering in Double-Gate MOSFETs. IEEE Nanotechnology Magazine, 2006, 5, 430-435.	2.0	10
71	Conductance measurements of nanoscale regions with in situ transmission electron microscopy. Materials Science and Engineering C, 2006, 26, 776-781.	7.3	4
72	Multifunctional Device Using Nanodot Array. Japanese Journal of Applied Physics, 2006, 45, 5317-5321.	1.5	16

#	Article	IF	CITATIONS
73	Tunnel Conductance through One or a Few Fe Particles Embedded in an MgO Matrix. Japanese Journal of Applied Physics, 2006, 45, 1946-1949.	1.5	1
74	Room-temperature-operating data processing circuit based on single-electron transfer and detection with metal-oxide-semiconductor field-effect transistor technology. Applied Physics Letters, 2006, 88, 183101.	3.3	64
75	Electrostatically gated Si devices: Coulomb blockade and barrier capacitance. Applied Physics Letters, 2006, 89, 052102.	3.3	13
76	Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor. Applied Physics Letters, 2006, 88, 053121.	3.3	111
77	Single-electron device using Si nanodot array and multi-input gates. , 2006, , .		3
78	Valley Polarization in Si(100) at Zero Magnetic Field. Physical Review Letters, 2006, 96, 236801.	7.8	131
79	Impurity conduction in phosphorus-doped buried-channel silicon-on-insulator field-effect transistors at temperatures between 10 and295K. Physical Review B, 2006, 74, .	3.2	15
80	In situConductance Measurement of a Limited Number of Nanoparticles during Transmission Electron Microscopy Observation. Japanese Journal of Applied Physics, 2005, 44, L790-L792.	1.5	11
81	Charge-State Control of Phosphorus Donors in Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistor. Japanese Journal of Applied Physics, 2005, 44, 2588-2591.	1.5	9
82	Back-Gate Effect on Coulomb Blockade in Silicon-on-Insulator Trench Wires. Japanese Journal of Applied Physics, 2005, 44, 7717-7719.	1.5	8
83	Silicon Single-Electron Pump and Turnstile: Interplay with Crystalline Imperfections. Materials Research Society Symposia Proceedings, 2005, 864, 671.	0.1	1
84	Manipulation and detection of single electrons for future information processing. Journal of Applied Physics, 2005, 97, 031101.	2.5	112
85	<i>In situ</i> Transmission Electron Microscopy on the Conductance Quantization of a Fe Nano-particle System. Materia Japan, 2005, 44, 990-990.	0.1	Ο
86	Simultaneous-Sweep Method for Evaluation of Single-Electron Transistors with Barriers Induced by Gate Electric Field. Japanese Journal of Applied Physics, 2004, 43, L1048-L1050.	1.5	8
87	Real-Time Observation of Single-Electron Movement through Silicon Single-Electron Transistor. Japanese Journal of Applied Physics, 2004, 43, 6863-6867.	1.5	2
88	Analysis of Back-Gate Voltage Dependence of Threshold Voltage of Thin Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistor and Its Application to Si Single-Electron Transistor. Japanese Journal of Applied Physics, 2004, 43, 2036-2040.	1.5	18
89	Current quantization due to single-electron transfer in Si-wire charge-coupled devices. Applied Physics Letters, 2004, 84, 1323-1325.	3.3	94
90	Correlated diffusion of silicon and boron in thermally grown SiO2. Applied Physics Letters, 2004, 85, 221-223.	3.3	19

#	Article	IF	CITATIONS
91	Multilevel memory using an electrically formed single-electron box. Applied Physics Letters, 2004, 85, 1277-1279.	3.3	31
92	Modeling of Si self-diffusion in SiO2: Effect of the Si/SiO2 interface including time-dependent diffusivity. Applied Physics Letters, 2004, 84, 876-878.	3.3	67
93	Effect of Si/SiO2Interface on Silicon and Boron Diffusion in Thermally Grown SiO2. Japanese Journal of Applied Physics, 2004, 43, 7837-7842.	1.5	13
94	RESISTANCE SPIKES INDUCED BY GATE-CONTROLLED VALLEY-SPLITTING IN SILICON. International Journal of Modern Physics B, 2004, 18, 3603-3608.	2.0	0
95	A silicon bi-layer system. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 72-75.	2.7	5
96	Automatic Control of Oscillation Phase of a Single-Electron Transistor. IEEE Electron Device Letters, 2004, 25, 31-33.	3.9	8
97	Error mechanisms and rates in tunable-barrier single-electron turnstiles and charge-coupled devices. Journal of Applied Physics, 2004, 96, 5254-5266.	2.5	30
98	Simulation of correlated diffusion of Si and B in thermally grown SiO2. Journal of Applied Physics, 2004, 96, 5513-5519.	2.5	11
99	Silicon-Based, Tunable-Barrier Single Charge Sources. , 2004, , .		0
100	A multiple-valued logic and memory with combined single-electron and metal-oxide-semiconductor transistors. IEEE Transactions on Electron Devices, 2003, 50, 462-470.	3.0	106
101	Development of silicon single-electron devices. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 19, 95-101.	2.7	7
102	Effect of the Si/SiO2 interface on self-diffusion of Si in semiconductor-grade SiO2. Applied Physics Letters, 2003, 83, 3897-3899.	3.3	55
103	The Effect of Partial Pressure of Oxygen on Self-Diffusion of Si in SiO2. Japanese Journal of Applied Physics, 2003, 42, L1492-L1494.	1.5	11
104	Self-diffusion of Si in thermally grown SiO2 under equilibrium conditions. Journal of Applied Physics, 2003, 93, 3674-3676.	2.5	68
105	Electron pump by a combined single-electron/field-effect- transistor structure. Applied Physics Letters, 2003, 82, 1221-1223.	3.3	59
106	Turnstile Operation Using a Silicon Dual-Gate Single-Electron Transistor. Japanese Journal of Applied Physics, 2003, 42, L1109-L1111.	1.5	24
107	Threshold Voltage of Si Single-Electron Transistor. Japanese Journal of Applied Physics, 2003, 42, 2429-2433.	1.5	20
108	Microscopic Observations of Single-Electron Island in Si Single-Electron Transistors. Japanese Journal of Applied Physics, 2003, 42, 2438-2443.	1.5	6

#	Article	IF	CITATIONS
109	Detection of single charges and their generation-recombination dynamics in Si nanowires at room temperature. Applied Physics Letters, 2002, 80, 4567-4569.	3.3	30
110	Mechanism of Single-Charge Detection using Electron–Hole System in Si-wire Transistors. Japanese Journal of Applied Physics, 2002, 41, 1209-1213.	1.5	13
111	A Merged Single-Electron Transistor and Metal-Oxide-Semiconductor Transistor Logic for Interface and Multiple-Valued Functions. Japanese Journal of Applied Physics, 2002, 41, 2566-2568.	1.5	25
112	Observation and Circuit Application of Negative Differential Conductance in Silicon Single-Electron Transistors. Japanese Journal of Applied Physics, 2002, 41, 2569-2573.	1.5	18
113	Voltage Gain of Si Single-Electron Transistor and Analysis of Performance of n-Metal-Oxide-Semiconductor Type Inverter with Resistive Load. Japanese Journal of Applied Physics, 2002, 41, 458-463.	1.5	9
114	Silicon single-electron devices. Journal of Physics Condensed Matter, 2002, 14, R995-R1033.	1.8	111
115	Fabrication of single-electron transistors and circuits using SOIs. Solid-State Electronics, 2002, 46, 1723-1727.	1.4	9
116	Single-electron devices formed by pattern-dependent oxidation: microscopic structural evaluation. Applied Surface Science, 2002, 190, 144-150.	6.1	13
117	Silicon Single-Electron Transistors and Single-Electron CCD. Materials Research Society Symposia Proceedings, 2001, 686, 1.	0.1	0
118	Single-electron and quantum SOI devices. Microelectronic Engineering, 2001, 59, 435-442.	2.4	20
119	Manipulation of elementary charge in a silicon charge-coupled device. Nature, 2001, 410, 560-562.	27.8	77
120	Mechanism of Potential Profile Formation in Silicon Single-Electron Transistors Fabricated Using Pattern-Dependent Oxidation. Japanese Journal of Applied Physics, 2001, 40, L29-L32.	1.5	80
121	Evidence for activated conduction in a single electron transistor. Journal of Applied Physics, 2001, 89, 410-419.	2.5	28
122	Excellent charge offset stability in a Si-based single-electron tunneling transistor. Applied Physics Letters, 2001, 79, 3188-3190.	3.3	73
123	Multipeak negative-differential-resistance device by combining single-electron and metal–oxide–semiconductor transistors. Applied Physics Letters, 2001, 79, 3618-3620.	3.3	49
124	Designing of silicon effective quantum dots by using the oxidation-induced strain: a theoretical approach. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 337-341.	2.7	43
125	Single-Electron Transistor and Current-Switching Device Fabricated by Vertical Pattern-Dependent Oxidation. Japanese Journal of Applied Physics, 2000, 39, 2325-2328.	1.5	16
126	Multigate single-electron transistors and their application to an exclusive-OR gate. Applied Physics Letters, 2000, 76, 637-639.	3.3	98

#	Article	IF	CITATIONS
127	Si complementary single-electron inverter with voltage gain. Applied Physics Letters, 2000, 76, 3121-3123.	3.3	84
128	A Si Memory Device Composed of a One-Dimensional Metal-Oxide-Semiconductor Field-Effect-Transistor Switch and a Single-Electron-Transistor Detector. Japanese Journal of Applied Physics, 1999, 38, 2457-2461.	1.5	20
129	Asymmetric tunnel barrier in a Si single-electron transistor. Microelectronic Engineering, 1999, 47, 197-199.	2.4	4
130	Theory of activated conduction in a Si single-electron transistor. Microelectronic Engineering, 1999, 47, 205-207.	2.4	11
131	Double-island single-electron devices. A useful unit device for single-electron logic LSI's. IEEE Transactions on Electron Devices, 1999, 46, 954-959.	3.0	48
132	Silicon single-electron devices. International Journal of Electronics, 1999, 86, 605-639.	1.4	32
133	Observation of shot noise suppression at the peaks of Coulomb oscillations. Solid-State Electronics, 1998, 42, 1429-1431.	1.4	2
134	Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 69.	1.6	248
135	Si memory device operated with a small number of electrons by using a single-electron-transistor detector. Electronics Letters, 1998, 34, 45.	1.0	7
136	Suppression of Effects of Parasitic Metal-Oxide-Semiconductor Field-Effect Transistors on Si Single-Electron Transistors. Japanese Journal of Applied Physics, 1998, 37, 3257-3263.	1.5	36
137	Sub-10-nm Overlay Accuracy in Electron Beam Lithography for Nanometer-Scale Device Fabrication. Japanese Journal of Applied Physics, 1998, 37, 6788-6791.	1.5	11
138	Quantized conductance in a small one-dimensional Si wire on a thin silicon-on-insulator substrate fabricated using SiN-film-masked oxidation. Semiconductor Science and Technology, 1998, 13, 1047-1051.	2.0	8
139	Fabrication ofSiO2/Si/SiO2Double Barrier Diodes using Two-Dimensional Si Structures. Japanese Journal of Applied Physics, 1997, 36, 3669-3674.	1.5	17
140	Observation of Single Electron-Hole Recombination and Photon-Pumped Current in an Asymmetric Si Single-Electron Transistor. Physical Review Letters, 1997, 78, 1532-1535.	7.8	50
141	Surface reactions of Ge chemical vapor deposition using diethylgermane. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 439-442.	2.1	Ο
142	Co-tunneling current in very small Si single-electron transistors. Physica B: Condensed Matter, 1996, 227, 105-108.	2.7	11
143	Electron tunneling from the edge of thin singleâ€crystal Si layers through SiO2film. Journal of Applied Physics, 1996, 80, 4450-4457.	2.5	11
144	Transport properties of silicon nanostructures fabricated on SIMOX substrates. Microelectronic Engineering, 1995, 28, 399-405.	2.4	14

#	Article	IF	CITATIONS
145	Surface Photochemical Reactions of Dimethylgermane, Ge (  CH 3 ) 2 H 2, an Ge Growth. Journal of the Electrochemical Society, 1995, 142, 1952-1956.	d Their Ap	plication to
146	Fabrication of thickness-controlled silicon nanowires and their characteristics. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 2166.	1.6	34
147	Energy Eigenvalues and Quantized Conductance Values of Electrons in Si Quantum Wires on mb{100mb} Plane. Japanese Journal of Applied Physics, 1995, 34, 5489-5498.	1.5	29
148	Thermal Agglomeration of Thin Single Crystal Si on \$f SiO_{2}\$ in Vacuum. Japanese Journal of Applied Physics, 1995, 34, 1728-1735.	1.5	54
149	Quantized Conductance of a Silicon Wire Fabricated by Separation-by-Implanted-Oxygen Technology. Japanese Journal of Applied Physics, 1995, 34, 1309-1314.	1.5	26
150	Photoluminescence from a Silicon Quantum Well Formed on Separation by Implanted Oxygen Substrate. Japanese Journal of Applied Physics, 1995, 34, 950-954.	1.5	86
151	Timeâ€resolved measurement of singleâ€electron tunneling in a Si singleâ€electron transistor with satellite Si islands. Applied Physics Letters, 1995, 67, 2957-2959.	3.3	63
152	Counterâ€oxidation of superficial Si in singleâ€crystalline Si on SiO2structure. Applied Physics Letters, 1994, 65, 2987-2989.	3.3	48
153	Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 1993, 32, L431-L433.	1.5	5
154	Self-Limiting Adsorption of SiCl2H2and Its Application to the Layer-by-Layer Photochemical Process. Japanese Journal of Applied Physics, 1991, 30, L209-L211.	1.5	35
155	Germanium Atomic Layer Epitaxy Controlled by Surface Chemical Reactions. Journal of the Electrochemical Society, 1989, 136, 1826-1827.	2.9	46
156	Ge Atomic Layer Epitaxy by Use of Ar Ion Laser Heating. Japanese Journal of Applied Physics, 1989, 28, 2387-2390.	1.5	22
157	Silicon epitaxial growth on germanium using an Si2H6 low-pressure chemical vapor deposition technique. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1989, 7, 225.	1.6	7
158	Growth and Etching of Germanium Films by Chemical Vapor Deposition in a GeCl4 â€â€‰â€‰H 2 Gas S Journal of the Electrochemical Society, 1988, 135, 1539-1543.	System. 2.9	11
159	Silicon epitaxy on germanium using a SiH4 low-pressure chemical-vapor deposition process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1987, 5, 1551.	1.6	5
160	Selective Ge deposition on Si using thermal decomposition of GeH4. Applied Physics Letters, 1985, 47, 863-865.	3.3	47
161	New platinum silicide formation method using reaction between platinum and silane. Journal of Applied Physics, 1985, 58, 3190-3194.	2.5	8

162 In Situ Transmission Electron Microscopy for Electronics. , 0, , .

#	Article	IF	CITATIONS
163	Nanoscale Switching and Degradation of Resistive Random Access Memory Studied by In Situ Electron Microscopy. , 0, , .		0
164	Full Adder Operation Based on Si Nanodot Array Device with Multiple Inputs and Outputs. , 0, , 131-139.		0