Yue Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8495185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity. Science Advances, 2022, 8, eabl5220.	10.3	11
2	ltaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nature Cell Biology, 2022, 24, 353-363.	10.3	67
3	Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. Journal of Hepatology, 2022, 77, 453-466.	3.7	50
4	Exploring Degradation of Mutant and Wild-Type Epidermal Growth Factor Receptors Induced by Proteolysis-Targeting Chimeras. Journal of Medicinal Chemistry, 2022, 65, 8416-8443.	6.4	10
5	Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein and Cell, 2021, 12, 557-577.	11.0	14
6	Advancing targeted protein degradation for cancer therapy. Nature Reviews Cancer, 2021, 21, 638-654.	28.4	251
7	CBFB-MYH11 Fusion Sequesters RUNX1 in Cytoplasm to Prevent DNMT3A Recruitment to Target Genes in AML. Frontiers in Cell and Developmental Biology, 2021, 9, 675424.	3.7	6
8	Discovery of Potent and Selective Epidermal Growth Factor Receptor (EGFR) Bifunctional Small-Molecule Degraders. Journal of Medicinal Chemistry, 2020, 63, 1216-1232.	6.4	111
9	The Zscan4-Tet2 Transcription Nexus Regulates Metabolic Rewiring and Enhances Proteostasis to Promote Reprogramming. Cell Reports, 2020, 32, 107877.	6.4	22
10	USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. Science Advances, 2020, 6, .	10.3	28
11	Targeting ferroptosis alleviates methionineâ€choline deficient (MCD)â€diet induced NASH by suppressing liver lipotoxicity. Liver International, 2020, 40, 1378-1394.	3.9	135
12	Tumour metabolites hinder DNA repair. Nature, 2020, 582, 492-494.	27.8	10
13	CRL4 ^{DCAF1/VprBP} E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development. Science Advances, 2020, 6, .	10.3	27
14	The oncometabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells to ferroptosis. Cell Death and Disease, 2019, 10, 755.	6.3	46
15	SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 2019, 14, e0211796.	2.5	40
16	Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. Laboratory Investigation, 2019, 99, 588-598.	3.7	16
17	ELP3 Acetyltransferase is phosphorylated and regulated by the oncogenic anaplastic lymphoma kinase (ALK). Biochemical Journal, 2019, 476, 2239-2254.	3.7	7
18	Impaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. Journal of Clinical Investigation, 2019, 129, 4393-4407.	8.2	14

#	Article	IF	CITATIONS
19	Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. Journal of Clinical Investigation, 2019, 129, 4316-4331.	8.2	143
20	<scp>SIRT</scp> 5 inhibits peroxisomal <scp>ACOX</scp> 1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Reports, 2018, 19, .	4.5	171
21	Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends in Cancer, 2018, 4, 151-165.	7.4	160
22	Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nature Communications, 2018, 9, 508.	12.8	127
23	Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene, 2018, 37, 1637-1653.	5.9	125
24	Proteolysis Targeting Chimeras (PROTACs) of Anaplastic Lymphoma Kinase (ALK). European Journal of Medicinal Chemistry, 2018, 151, 304-314.	5.5	165
25	SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Reports, 2018, 25, 1485-1500.e4.	6.4	63
26	Vpr Targets TET2 for Degradation by CRL4VprBP E3 Ligase to Sustain IL-6 Expression and Enhance HIV-1 Replication. Molecular Cell, 2018, 70, 961-970.e5.	9.7	77
27	<i>L2hgdh</i> Deficiency Accumulates <scp>l</scp> -2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration. Molecular and Cellular Biology, 2017, 37, .	2.3	27
28	Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Research, 2017, 77, 2413-2423.	0.9	63
29	CLOCK Acetylates ASS1 to Drive Circadian Rhythm of Ureagenesis. Molecular Cell, 2017, 68, 198-209.e6.	9.7	53
30	<scp>SIRT</scp> 7 deacetylates <scp>DDB</scp> 1 and suppresses the activity of the <scp>CRL</scp> 4 E3 ligase complexes. FEBS Journal, 2017, 284, 3619-3636.	4.7	12
31	The antiobesity factor <scp>WDTC</scp> 1 suppresses adipogenesis via the <scp>CRL</scp> 4 <scp>^{WDTC}</scp> ¹ E3 ligase. EMBO Reports, 2016, 17, 638-647.	4.5	37
32	Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2016, 291, 18947-18958.	3.4	88
33	Destabilization of Fatty Acid Synthase by Acetylation Inhibits <i>De Novo</i> Lipogenesis and Tumor Cell Growth. Cancer Research, 2016, 76, 6924-6936.	0.9	92
34	Suffocation of gene expression. Nature, 2016, 537, 42-43.	27.8	4
35	Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Reports, 2016, 16, 2846-2854.	6.4	235
36	Hypertension-associated C825T polymorphism impairs the function of Gβ3 to target GRK2 ubiquitination. Cell Discovery, 2016, 2, 16005.	6.7	13

#	Article	IF	CITATIONS
37	<scp>SIRT</scp> 5 promotes <scp>IDH</scp> 2 desuccinylation and G6 <scp>PD</scp> deglutarylation to enhance cellular antioxidant defense. EMBO Reports, 2016, 17, 811-822.	4.5	210
38	DCAF1 controls T-cell function via p53-dependent and -independent mechanisms. Nature Communications, 2016, 7, 10307.	12.8	27
39	Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Reports, 2015, 13, 2353-2361.	6.4	153
40	<scp>PARD</scp> 3 induces <scp>TAZ</scp> activation and cell growth by promoting <scp>LATS</scp> 1 and <scp>PP</scp> 1 interaction. EMBO Reports, 2015, 16, 975-985.	4.5	46
41	Insulin and mTOR Pathway Regulate HDAC3-Mediated Deacetylation and Activation of PCK1. PLoS Biology, 2015, 13, e1002243.	5.6	72
42	CRL4VprBP E3 Ligase Promotes Monoubiquitylation and Chromatin Binding of TET Dioxygenases. Molecular Cell, 2015, 57, 247-260.	9.7	90
43	WT1 Recruits TET2 to Regulate Its Target Gene Expression and Suppress Leukemia Cell Proliferation. Molecular Cell, 2015, 57, 662-673.	9.7	242
44	<scp>SIRT</scp> 3â€dependent <scp>GOT</scp> 2 acetylation status affects the malate–aspartate <scp>NADH</scp> shuttle activity and pancreatic tumor growth. EMBO Journal, 2015, 34, 1110-1125.	7.8	152
45	A Non-Canonical Function of Gβ as a Subunit of E3 Ligase in Targeting GRK2ÂUbiquitylation. Molecular Cell, 2015, 58, 794-803.	9.7	30
46	Estrogen regulates Hippo signaling via GPER in breast cancer. Journal of Clinical Investigation, 2015, 125, 2123-2135.	8.2	179
47	D-2-hydroxyglutarate is essential for maintaining oncogenic property of mutant IDH-containing cancer cells but dispensable for cell growth. Oncotarget, 2015, 6, 8606-8620.	1.8	46
48	G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. ELife, 2015, 4, e06734.	6.0	80
49	TET-catalyzed 5-methylcytosine hydroxylation is dynamically regulated by metabolites. Cell Research, 2014, 24, 1017-1020.	12.0	51
50	The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Science Signaling, 2014, 7, ra67.	3.6	61
51	The 3M Complex Maintains Microtubule and Genome Integrity. Molecular Cell, 2014, 54, 791-804.	9.7	61
52	Oxidative Stress Activates SIRT2 to Deacetylate and Stimulate Phosphoglycerate Mutase. Cancer Research, 2014, 74, 3630-3642.	0.9	124
53	Out of the F-box: Reawakening the Pancreas. Cell Stem Cell, 2014, 15, 111-112.	11.1	8
54	Regulation of G6PD acetylation by KAT9/SIRT2 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO Journal, 2014, 33, 1304-20.	7.8	205

#	Article	IF	CITATIONS
55	CUL9 Mediates the Functions of the 3M Complex and Ubiquitylates Survivin to Maintain Genome Integrity. Molecular Cell, 2014, 54, 805-819.	9.7	60
56	NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. Journal of Clinical Investigation, 2014, 124, 5453-5465.	8.2	128
57	Acetylation Stabilizes ATP-Citrate Lyase to Promote Lipid Biosynthesis and Tumor Growth. Molecular Cell, 2013, 51, 506-518.	9.7	291
58	R-2-Hydroxyglutarate as the Key Effector of IDH Mutations Promoting Oncogenesis. Cancer Cell, 2013, 23, 274-276.	16.8	77
59	Nutrient Sensing, Metabolism, and Cell Growth Control. Molecular Cell, 2013, 49, 379-387.	9.7	285
60	Metabolic alteration in tumorigenesis. Science China Life Sciences, 2013, 56, 1067-1075.	4.9	19
61	VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity. EMBO Journal, 2012, 31, 945-958.	7.8	34
62	<i>IDH1</i> and <i>IDH2</i> Mutations in Tumorigenesis: Mechanistic Insights and Clinical Perspectives. Clinical Cancer Research, 2012, 18, 5562-5571.	7.0	341
63	Mechanistic insights into the regulation of metabolic enzymes by acetylation. Journal of Cell Biology, 2012, 198, 155-164.	5.2	202
64	Alterations of metabolic genes and metabolites in cancer. Seminars in Cell and Developmental Biology, 2012, 23, 370-380.	5.0	100
65	Acetylation Negatively Regulates Glycogen Phosphorylase by Recruiting Protein Phosphatase 1. Cell Metabolism, 2012, 15, 75-87.	16.2	110
66	The mechanisms of IDH mutations in tumorigenesis. Cell Research, 2012, 22, 1102-1104.	12.0	32
67	Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes and Development, 2012, 26, 1326-1338.	5.9	855
68	Regulation of Glycolysis and Gluconeogenesis by Acetylation of PKM and PEPCK. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 285-289.	1.1	93
69	Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth. Molecular Cell, 2011, 42, 719-730.	9.7	479
70	Acetylation Regulates Gluconeogenesis by Promoting PEPCK1 Degradation via Recruiting the UBR5ÂUbiquitin Ligase. Molecular Cell, 2011, 43, 33-44.	9.7	331
71	X-Linked Mental Retardation Gene CUL4B Targets Ubiquitylation of H3K4 Methyltransferase Component WDR5 and Regulates Neuronal Gene Expression. Molecular Cell, 2011, 43, 381-391.	9.7	102
72	Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Reports, 2011, 12, 534-541.	4.5	468

Yue Xiong

#	Article	IF	CITATIONS
73	Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 2011, 36, 108-116.	7.5	323
74	Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 2011, 19, 17-30.	16.8	2,340
75	Chromatin regulation by CRL4 E3 ubiquitin ligases: CUL4B targets WDR5 ubiquitylation in the nucleus. Cell Cycle, 2011, 10, 4197-4198.	2.6	4
76	Cytoplasmic <i>CUL9/PARC</i> Ubiquitin Ligase Is a Tumor Suppressor and Promotes p53-Dependent Apoptosis. Cancer Research, 2011, 71, 2969-2977.	0.9	49
77	Regulation of Cellular Metabolism by Protein Lysine Acetylation. Science, 2010, 327, 1000-1004.	12.6	1,642
78	Targeting p21 Degradation Locally. Developmental Cell, 2010, 19, 641-643.	7.0	4
79	TEAD Transcription Factors Mediate the Function of TAZ in Cell Growth and Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2009, 284, 13355-13362.	3.4	470
80	Lysine 88 Acetylation Negatively Regulates Ornithine Carbamoyltransferase Activity in Response to Nutrient Signals. Journal of Biological Chemistry, 2009, 284, 13669-13675.	3.4	55
81	CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends in Biochemical Sciences, 2009, 34, 562-570.	7.5	351
82	Targeting protein ubiquitylation: DDB1 takes its RING off. Nature Cell Biology, 2009, 11, 379-381.	10.3	11
83	Glioma-Derived Mutations in <i>IDH1</i> Dominantly Inhibit IDH1 Catalytic Activity and Induce HIF-1α. Science, 2009, 324, 261-265.	12.6	1,014
84	WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1–CUL4–ROC1 ligase. Genes and Development, 2008, 22, 866-871.	5.9	135
85	<i>Arabidopsis</i> DDB1-CUL4 ASSOCIATED FACTOR1 Forms a Nuclear E3 Ubiquitin Ligase with DDB1 and CUL4 That Is Involved in Multiple Plant Developmental Processes. Plant Cell, 2008, 20, 1437-1455.	6.6	142
86	Human Immunodeficiency Virus Type 1 Vpr-Binding Protein VprBP, a WD40 Protein Associated with the DDB1-CUL4 E3 Ubiquitin Ligase, Is Essential for DNA Replication and Embryonic Development. Molecular and Cellular Biology, 2008, 28, 5621-5633.	2.3	76
87	TAZ Promotes Cell Proliferation and Epithelial-Mesenchymal Transition and Is Inhibited by the Hippo Pathway. Molecular and Cellular Biology, 2008, 28, 2426-2436.	2.3	805
88	The Cullinâ€ROC familyof E3 Ubiquitin Ligases. FASEB Journal, 2008, 22, 401.1.	0.5	0
89	pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes and Development, 2007, 21, 49-54.	5.9	292
90	No exit strategy? No problem: APC inhibits beta-catenin inside the nucleus. Genes and Development, 2006, 20, 637-642.	5.9	9

#	Article	IF	CITATIONS
91	DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes and Development, 2006, 20, 2949-2954.	5.9	287
92	Assays for RING Family Ubiquitin Ligases. , 2005, 301, 037-046.		23
93	Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nature Cell Biology, 2004, 6, 1003-1009.	10.3	322
94	Ribosomal Protein L11 Negatively Regulates Oncoprotein MDM2 and Mediates a p53-Dependent Ribosomal-Stress Checkpoint Pathway. Molecular and Cellular Biology, 2003, 23, 8902-8912.	2.3	488
95	p15PAF, a novel PCNA associated factor with increased expression in tumor tissues. Oncogene, 2001, 20, 484-489.	5.9	99
96	A p53 Amino-Terminal Nuclear Export Signal Inhibited by DNA Damage-Induced Phosphorylation. Science, 2001, 292, 1910-1915.	12.6	342
97	The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1. Molecular and Cellular Biology, 2000, 20, 8185-8197.	2.3	10
98	Parathyroid Tumor Suppressor on 1p: Analysis of the p18 Cyclin-Dependent Kinase Inhibitor Gene As a Candidate. Journal of Bone and Mineral Research, 1997, 12, 1330-1334.	2.8	41
99	Molecular analysis of the cyclin-dependent kinase inhibitor genesp15INK4b/MTS21,p16INK4/MTS1,p18 andpl9 in human cancer cell lines. , 1996, 68, 605-611.		39
100	Purification and crystallization of cyclinâ€dependent kinase inhibitor p21. Protein Science, 1996, 5, 1928-1930.	7.6	4