
Bin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8494155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 2016, 138, 6204-6216.	13.7	1,273
2	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	12.8	764
3	A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nature Energy, 2017, 2, 877-883.	39.5	563
4	Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society, 2020, 142, 14399-14416.	13.7	444
5	Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water. ACS Applied Materials & Interfaces, 2017, 9, 10286-10295.	8.0	371
6	A Base-Resistant Metalloporphyrin Metal–Organic Framework for C–H Bond Halogenation. Journal of the American Chemical Society, 2017, 139, 211-217.	13.7	250
7	Tuning CO ₂ Selective Adsorption over N ₂ and CH ₄ in UiO-67 Analogues through Ligand Functionalization. Inorganic Chemistry, 2014, 53, 9254-9259.	4.0	239
8	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
9	Ligand Rigidification for Enhancing the Stability of Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 10283-10293.	13.7	172
10	A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nature Communications, 2019, 10, 3861.	12.8	164
11	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	18.8	138
12	A stable porphyrinic metal–organic framework pore-functionalized by high-density carboxylic groups for proton conduction. Journal of Materials Chemistry A, 2017, 5, 14525-14529.	10.3	121
13	Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Advanced Materials, 2020, 32, e1907995.	21.0	118
14	A Copper(II)-Paddlewheel Metal–Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water. ACS Applied Materials & Interfaces, 2017, 9, 27027-27035.	8.0	109
15	Oriented Nano–Microstructureâ€Assisted Controllable Fabrication of Metal–Organic Framework Membranes onÂNickel Foam. Advanced Materials, 2016, 28, 2374-2381.	21.0	99
16	Two isomeric In(<scp>iii</scp>)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water. Inorganic Chemistry Frontiers, 2020, 7, 1161-1171.	6.0	89
17	Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chemical Engineering Journal, 2018, 346, 489-496.	12.7	87
18	A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chemical Communications, 2020, 56, 66-69.	4.1	76

Bin Wang

#	Article	IF	CITATIONS
19	Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. Journal of Hazardous Materials, 2020, 382, 121018.	12.4	64
20	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. Journal of the American Chemical Society, 2021, 143, 2784-2791.	13.7	61
21	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	10.4	57
22	Effective adsorption of metronidazole antibiotic from water with a stable Zr(IV)-MOFs: Insights from DFT, kinetics and thermodynamics studies. Journal of Environmental Chemical Engineering, 2020, 8, 103642.	6.7	56
23	A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake. Journal of Solid State Chemistry, 2015, 223, 104-108.	2.9	44
24	An anionic In(III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 2019, 30, 234-238.	9.0	39
25	Selective detection of two representative organic arsenic compounds in aqueous medium with metal–organic frameworks. Environmental Science: Nano, 2019, 6, 2759-2766.	4.3	33
26	Sensitive and Selective Detection of Bisphenol Compounds in a Fluorescent Metal-Organic Framework. Sensors and Actuators B: Chemical, 2020, 314, 128048.	7.8	33
27	Determination and removal of clenbuterol with a stable fluorescent zirconium(IV)-based metal organic framework. Mikrochimica Acta, 2019, 186, 454.	5.0	32
28	Tetrazolate–azido–copper(<scp>ii</scp>) coordination polymers: tuned synthesis, structure, and magnetic properties. CrystEngComm, 2015, 17, 4136-4142.	2.6	25
29	Dual-emissive metal–organic framework: a novel turn-on and ratiometric fluorescent sensor for highly efficient and specific detection of hypochlorite. Dalton Transactions, 2020, 49, 9680-9687.	3.3	25
30	Controlling structural topology of metal-organic frameworks with a desymmetric 4-connected ligand through the design of metal-containing nodes. Chinese Chemical Letters, 2016, 27, 502-506.	9.0	23
31	A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes. Journal of Solid State Chemistry, 2016, 233, 143-149.	2.9	22
32	A novel hydrogen-bonded organic framework for the sensing of two representative organic arsenics. Canadian Journal of Chemistry, 2020, 98, 352-357.	1.1	22
33	Pillar-Layered Metal–Organic Frameworks Based on a Hexaprismane [Co6(μ3-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Inorganic Chemistry, 2020, 59, 11728-11735.	4.0	17
34	A Baseâ€Resistant Zn ^{II} â€Based Metal–Organic Framework: Synthesis, Structure, Postsynthetic Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871.	2.8	16
35	A fluorescent 3-D metal-organic framework with unusual tetranuclear zinc secondary building units. Journal of Coordination Chemistry, 2014, 67, 3484-3491.	2.2	12
36	A Copper-Based Metal–Organic Framework for C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 2021, 60, 18816-18821.	4.0	9

BIN WANG

#	Article	IF	CITATIONS
37	A three-dimensional metal–organic framework with high performance of dual cation sensing synthesized <i>via</i> single-crystal transformation. New Journal of Chemistry, 2020, 44, 11829-11834.	2.8	8
38	Different two-dimensional metal-organic frameworks through ligand modification. Journal of Coordination Chemistry, 2016, 69, 2193-2199.	2.2	4
39	An antiferromagnetic metal-organic framework with high symmetry octanuclear Mn8(μ4-O)3(COO)12 secondary building units. Journal of Coordination Chemistry, 2014, 67, 2606-2614.	2.2	3
40	A pillar-layered Cd(II) metal-organic framework for selective detection of organic explosives. Journal of Coordination Chemistry, 2017, 70, 2541-2550.	2.2	3
41	Nanocage containing metal-organic framework constructed from a newly designed low symmetry tetra-pyrazole ligand. Journal of Coordination Chemistry, 2016, 69, 3242-3249.	2.2	1

Polymeric poly[[decaaquabis(μ₆-1,8-disulfonato-9<i>H</i>-carbazole-3,6-dicarboxylato)di-μ₃-hy**dr.o**xy-pen**to**azinc] decahydrate]. IUCrData, 2019, 4, . 42