Andrew H Sinclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493809/publications.pdf Version: 2024-02-01

	25034	18130
15,777	57	120
citations	h-index	g-index
010	010	
212	212	9928
docs citations	times ranked	citing authors
	citations 212	15,777 57 citations h-index 212 212

#	Article	IF	CITATIONS
1	Establishing a Molecular Genetic Diagnosis in Children with Differences of Sex Development: A Clinical Approach. Hormone Research in Paediatrics, 2023, 96, 128-143.	1.8	4
2	Meiotic genes in premature ovarian insufficiency: variants in HROB and REC8 as likely genetic causes. European Journal of Human Genetics, 2022, 30, 219-228.	2.8	18
3	Whole exome sequencing reveals copy number variants in individuals with disorders of sex development. Molecular and Cellular Endocrinology, 2022, 546, 111570.	3.2	4
4	Two ovarian candidate enhancers, identified by time series enhancer RNA analyses, harbor rare genetic variations identified in ovarian insufficiency. Human Molecular Genetics, 2022, 31, 2223-2235.	2.9	3
5	Generation and mutational analysis of a transgenic mouse model of human <i>SRY</i> . Human Mutation, 2022, 43, 362-379.	2.5	3
6	SOX Genes and Their Role in Disorders of Sex Development. Sexual Development, 2022, 16, 80-91.	2.0	9
7	Dominant TP63 missense variants lead to constitutive activation and premature ovarian insufficiency. Human Mutation, 2022, 43, 1443-1453.	2.5	8
8	Genetic Analysis Reveals Complete Androgen Insensitivity Syndrome in Female Children Surgically Treated for Inguinal Hernia. Journal of Investigative Surgery, 2021, 34, 227-233.	1.3	4
9	Analysis of the androgen receptor (AR) gene in a cohort of Indonesian undermasculinized 46, XY DSD patients. Egyptian Journal of Medical Human Genetics, 2021, 22, .	1.0	4
10	Application of a simple unstructured kinetic and cost of goods models to support <scp>T</scp> â€cell therapy manufacture. Biotechnology Progress, 2021, 37, e3205.	2.6	1
11	A recessive variant in TFAM causes mtDNA depletion associated with primary ovarian insufficiency, seizures, intellectual disability and hearing loss. Human Genetics, 2021, 140, 1733-1751.	3.8	15
12	Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility. Maturitas, 2020, 131, 78-86.	2.4	26
13	An InÂVitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development. Stem Cell Reports, 2020, 15, 1377-1391.	4.8	22
14	Genomic sequencing highlights the diverse molecular causes of Perrault syndrome: a peroxisomal disorder (PEX6), metabolic disorders (CLPP, GGPS1), and mtDNA maintenance/translation disorders (LARS2, TFAM). Human Genetics, 2020, 139, 1325-1343.	3.8	21
15	STAG3 homozygous missense variant causes primary ovarian insufficiency and male non-obstructive azoospermia. Molecular Human Reproduction, 2020, 26, 665-677.	2.8	26
16	New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing. Maturitas, 2020, 141, 9-19.	2.4	41
17	Analysis of variants in <i>GATA4</i> and <i>FOG2</i> / <i>ZFPM2</i> demonstrates benign contribution to 46,XY disorders of sex development. Molecular Genetics & Genomic Medicine, 2020, 8, e1095.	1.2	16
18	The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice. PLoS ONE, 2020, 15, e0227411.	2.5	12

#	Article	IF	CITATIONS
19	The Molecular Basis of Sex Determination and Differentiation: Implications for Understanding DSD. , 2020, , 13-26.		0
20	Australian Genomics: A Federated Model for Integrating Genomics into Healthcare. American Journal of Human Genetics, 2019, 105, 7-14.	6.2	75
21	Familial bilateral cryptorchidism is caused by recessive variants in <i>RXFP2</i> . Journal of Medical Genetics, 2019, 56, 727-733.	3.2	21
22	Functional Characterization of Two New Variants in the Bone Morphogenetic Protein 7 Prodomain in Two Pairs of Monozygotic Twins With Hypospadias. Journal of the Endocrine Society, 2019, 3, 814-824.	0.2	2
23	Functional analysis of novel desert hedgehog gene variants improves the clinical interpretation of genomic data and provides a more accurate diagnosis for patients with 46,XY differences of sex development. Journal of Medical Genetics, 2019, 56, 434-443.	3.2	11
24	TP63â€ŧruncating variants cause isolated premature ovarian insufficiency. Human Mutation, 2019, 40, 886-892.	2.5	29
25	<i>NR5A1</i> gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients. Human Mutation, 2019, 40, 207-216.	2.5	24
26	ldentification of Candidate Genes for Mayer-Rokitansky-Küster-Hauser Syndrome Using Genomic Approaches. Sexual Development, 2019, 13, 26-34.	2.0	29
27	Genetics and Genomics of Primary Ovarian Insufficiency. , 2019, , 427-445.		3
28	Genetic Control of Fetal Sex Development. , 2019, , 454-467.		0
29	The cell biology and molecular genetics of Müllerian duct development. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e310.	5.9	67
30	A novel, homozygous mutation in desert hedgehog (DHH) in a 46, XY patient with dysgenetic testes presenting with primary amenorrhoea: a case report. International Journal of Pediatric Endocrinology (Springer), 2018, 2018, 2.	1.6	14
31	Identification of variants in pleiotropic genes causing "isolated―premature ovarian insufficiency: implications for medical practice. European Journal of Human Genetics, 2018, 26, 1319-1328.	2.8	31
32	Functional characterization of novelÂ <i>NR5A1</i> Âvariants reveals multiple complex roles in disorders of sex development. Human Mutation, 2018, 39, 124-139.	2.5	38
33	The Role of Copy Number Variants in Disorders of Sex Development. Sexual Development, 2018, 12, 19-29.	2.0	37
34	Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nature Communications, 2018, 9, 5319.	12.8	116
35	Retinoic Acid Antagonizes Testis Development in Mice. Cell Reports, 2018, 24, 1330-1341.	6.4	46
36	Mutant NR5A1/SF-1 in patients with disorders of sex development shows defective activation of the <i>SOX9</i> TESCO enhancer. Human Mutation, 2018, 39, 1861-1874.	2.5	12

#	Article	IF	CITATIONS
37	GATA4 Variants in Individuals With a 46,XY Disorder of Sex Development (DSD) May or May Not Be Associated With Cardiac Defects Depending on Second Hits in Other DSD Genes. Frontiers in Endocrinology, 2018, 9, 142.	3.5	26
38	Cover Image, Volume 7, Issue 3. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e320.	5.9	0
39	Sex Determination, Human. , 2018, , .		1
40	Preparing for genomic medicine: a real world demonstration of health system change. Npj Genomic Medicine, 2017, 2, 16.	3.8	73
41	A duplication in a patient with 46, <scp>XX</scp> ovoâ€ŧesticular disorder of sex development refines the <i><scp>SOX9</scp></i> testisâ€specific regulatory region to 24 kb. Clinical Genetics, 2017, 92, 347-349.	2.0	23
42	Variants in congenital hypogonadotrophic hypogonadism genes identified in an Indonesian cohort of 46,XY under-virilised boys. Human Genomics, 2017, 11, 1.	2.9	23
43	XX Disorder of Sex Development is associated with an insertion on chromosome 9 and downregulation of RSPO1 in dogs (Canis lupus familiaris). PLoS ONE, 2017, 12, e0186331.	2.5	12
44	Painful ovulation in a 46,XX SRY â^'ve adult male with SOX9 duplication. Endocrinology, Diabetes and Metabolism Case Reports, 2017, 2017, .	0.5	5
45	Hormonal evaluation in relation to phenotype and genotype in 286 patients with a disorder of sex development from Indonesia. Clinical Endocrinology, 2016, 85, 247-257.	2.4	24
46	Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biology, 2016, 17, 243.	8.8	241
47	Of sex and determination: marking 25â€years of Randy, the sex-reversed mouse. Development (Cambridge), 2016, 143, 1633-1637.	2.5	18
48	Using ROADMAP Data to Identify Enhancers Associated with Disorders of Sex Development. Sexual Development, 2016, 10, 59-65.	2.0	12
49	Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocrine Reviews, 2016, 37, 609-635.	20.1	170
50	FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model. Reproduction, 2016, 152, 529-543.	2.6	19
51	Molecular mechanisms associated with 46,XX disorders of sex development. Clinical Science, 2016, 130, 421-432.	4.3	16
52	WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Developmental Biology, 2016, 412, 250-260.	2.0	43
53	Transgenic Chickens Overexpressing Aromatase Have High Estrogen Levels but Maintain a Predominantly Male Phenotype. Endocrinology, 2016, 157, 83-90.	2.8	44
54	Overexpression of Anti-Müllerian Hormone Disrupts Gonadal Sex Differentiation, Blocks Sex Hormone Synthesis, and Supports Cell Autonomous Sex Development in the Chicken. Endocrinology, 2016, 157, 1258-1275.	2.8	28

#	Article	IF	CITATIONS
55	Review disorders of sex development: The evolving role of genomics in diagnosis and gene discovery. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 337-350.	3.6	24
56	Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion. PLoS Genetics, 2016, 12, e1006067.	3.5	36
57	Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics, 2015, 16, 704.	2.8	54
58	The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. Journal of Biotechnology, 2015, 213, 3-12.	3.8	207
59	DMRT1 is required for Müllerian duct formation in the chicken embryo. Developmental Biology, 2015, 400, 224-236.	2.0	27
60	Whole exome sequencing combined with linkage analysis identifies a novel 3 bp deletion in NR5A1. European Journal of Human Genetics, 2015, 23, 486-493.	2.8	27
61	Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells1. Biology of Reproduction, 2015, 92, 145.	2.7	51
62	Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation1. Biology of Reproduction, 2015, 93, 138.	2.7	29
63	Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertility and Sterility, 2015, 103, 214-219.	1.0	37
64	The Genetic and Environmental Factors Underlying Hypospadias. Sexual Development, 2015, 9, 239-259.	2.0	142
65	Development of Retroviral Vectors for Tissue-Restricted Expression in Chicken Embryonic Gonads. PLoS ONE, 2014, 9, e101811.	2.5	8
66	The Genetics of Disorders of Sex Development in Humans. Sexual Development, 2014, 8, 262-272.	2.0	83
67	Identification, Expression, and Regulation of Anti-Müllerian Hormone Type-II Receptor in the Embryonic Chicken Gonad1. Biology of Reproduction, 2014, 90, 106.	2.7	28
68	Genetic regulation of mammalian gonad development. Nature Reviews Endocrinology, 2014, 10, 673-683.	9.6	162
69	RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biology, 2013, 14, R26.	9.6	98
70	Sex Determination, Human. , 2013, , 401-404.		0
71	An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. Journal of Cleaner Production, 2013, 41, 150-162.	9.3	58
72	The Molecular Genetics of Ovarian Differentiation in the Avian Model. Sexual Development, 2013, 7, 80-94.	2.0	48

#	Article	IF	CITATIONS
73	Overexpression of Aromatase Alone is Sufficient for Ovarian Development in Genetically Male Chicken Embryos. PLoS ONE, 2013, 8, e68362.	2.5	73
74	Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development. PLoS ONE, 2013, 8, e54606.	2.5	75
75	Redd1 Is a Novel Marker of Testis Development but Is Not Required for Normal Male Reproduction. Sexual Development, 2012, 6, 223-230.	2.0	4
76	Wnt Signaling in Ovarian Development Inhibits Sf1 Activation of Sox9 via the Tesco Enhancer. Endocrinology, 2012, 153, 901-912.	2.8	62
77	A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. European Journal of Human Genetics, 2012, 20, 348-351.	2.8	48
78	CITED2 mutations potentially cause idiopathic premature ovarian failure. Translational Research, 2012, 160, 384-388.	5.0	15
79	SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of Sex Development (DSD) patients with a mosaic karyotype. BMC Medical Genetics, 2012, 13, 108.	2.1	15
80	The Molecular Basis of Gonadal Development and Disorders of Sex Development. , 2012, , 1-9.		3
81	The proto-oncogene Ret is required for male foetal germ cell survival. Developmental Biology, 2012, 365, 101-109.	2.0	20
82	The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Developmental Biology, 2012, 366, 317-326.	2.0	63
83	The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Research, 2012, 20, 201-213.	2.2	43
84	Mammalian sex determination—insights from humans and mice. Chromosome Research, 2012, 20, 215-238.	2.2	139
85	Analysis of Gene Function in Cultured Embryonic Mouse Gonads Using Nucleofection. Sexual Development, 2011, 5, 7-15.	2.0	12
86	Inhibition of SRY-Calmodulin Complex Formation Induces Ectopic Expression of Ovarian Cell Markers in Developing XY Gonads. Endocrinology, 2011, 152, 2883-2893.	2.8	13
87	Manipulation of Estrogen Synthesis Alters MIR202* Expression in Embryonic Chicken Gonads1. Biology of Reproduction, 2011, 85, 22-30.	2.7	61
88	Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Human Molecular Genetics, 2011, 20, 2213-2224.	2.9	59
89	Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Human Molecular Genetics, 2011, 20, 3535-3535.	2.9	0
90	Identification of SOX3 as an XX male sex reversal gene in mice and humans. Journal of Clinical Investigation, 2011, 121, 328-341.	8.2	234

#	Article	IF	CITATIONS
91	Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis. PLoS ONE, 2011, 6, e17793.	2.5	116
92	Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells. PLoS ONE, 2011, 6, e20736.	2.5	27
93	Mutations in MAP3K1 Cause 46,XY Disorders of Sex Development and Implicate a Common Signal Transduction Pathway in Human Testis Determination. American Journal of Human Genetics, 2010, 87, 898-904.	6.2	155
94	Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is expressed in a sexually dimorphic pattern in developing mouse gonads. Developmental Dynamics, 2010, 239, 2735-2741.	1.8	9
95	Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB Journal, 2010, 24, 3026-3035.	0.5	68
96	Regulation of the female mouse germ cell cycle during entry into meiosis. Cell Cycle, 2010, 9, 408-418.	2.6	57
97	Gonadal defects in Cited2 -mutant mice indicate a role for SF1 in both testis and ovary differentiation. International Journal of Developmental Biology, 2010, 54, 683-689.	0.6	46
98	Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination. International Journal of Biochemistry and Cell Biology, 2010, 42, 472-477.	2.8	84
99	Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. International Journal of Developmental Biology, 2009, 53, 59-67.	0.6	53
100	Sox9-dependent expression of Gstm6 in Sertoli cells during testis development in mice. Reproduction, 2009, 137, 481-486.	2.6	10
101	Sexually Dimorphic MicroRNA Expression During Chicken Embryonic Gonadal Development1. Biology of Reproduction, 2009, 81, 165-176.	2.7	92
102	The Cerebellin 4 Precursor Gene Is a Direct Target of SRY and SOX9 in Mice1. Biology of Reproduction, 2009, 80, 1178-1188.	2.7	44
103	Normalizing Gene Expression Levels in Mouse Fetal Germ Cells1. Biology of Reproduction, 2009, 81, 362-370.	2.7	44
104	Rapid high-throughput analysis of DNasel hypersensitive sites using a modified Multiplex Ligation-dependent Probe Amplification approach. BMC Genomics, 2009, 10, 412.	2.8	8
105	Expression and evolutionary conservation of the tescalcin gene during development. Gene Expression Patterns, 2009, 9, 273-281.	0.8	20
106	Ex vivo magnetofection: A novel strategy for the study of gene function in mouse organogenesis. Developmental Dynamics, 2009, 238, 956-964.	1.8	19
107	Threeâ€dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Developmental Dynamics, 2009, 238, 1033-1041.	1.8	82
108	Maleâ€specific expression of <i>Aldh1a1</i> in mouse and chicken fetal testes: Implications for retinoid balance in gonad development. Developmental Dynamics, 2009, 238, 2073-2080.	1.8	43

#	Article	IF	CITATIONS
109	Rapid and reliable determination of transgene zygosity in mice by multiplex ligation-dependent probe amplification. Transgenic Research, 2009, 18, 987-991.	2.4	7
110	The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature, 2009, 461, 267-271.	27.8	728
111	Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBP. Differentiation, 2009, 77, 473-482.	1.9	31
112	Females Battle to Suppress Their Inner Male. Cell, 2009, 139, 1051-1053.	28.9	16
113	Endothelial cell migration directs testis cord formation. Developmental Biology, 2009, 326, 112-120.	2.0	164
114	Functional analysis of the SRY—KRAB interaction in mouse sex determination. Biology of the Cell, 2009, 101, 55-67.	2.0	15
115	Cloning and expression of R-Spondin1in different vertebrates suggests a conserved role in ovarian development. BMC Developmental Biology, 2008, 8, 72.	2.1	120
116	Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid. BMC Developmental Biology, 2008, 8, 85.	2.1	125
117	Dynamic Regulation of Mitotic Arrest in Fetal Male Germ Cells. Stem Cells, 2008, 26, 339-347.	3.2	247
118	Application of a Decision-Support Tool to Assess Pooling Strategies in Perfusion Culture Processes under Uncertainty. Biotechnology Progress, 2008, 21, 1231-1242.	2.6	50
119	Testis Development, Fertility, and Survival in Ethanolamine Kinase 2-Deficient Mice. Endocrinology, 2008, 149, 6176-6186.	2.8	8
120	The Rhox Homeobox Gene Family Shows Sexually Dimorphic and Dynamic Expression During Mouse Embryonic Gonad Development1. Biology of Reproduction, 2008, 79, 468-474.	2.7	30
121	Expression of Wsb2 in the developing and adult mouse testis. Reproduction, 2007, 133, 753-761.	2.6	9
122	Characterisation of Urogenital Ridge Gene Expression in the Human Embryonal Carcinoma Cell Line NT2/D1. Sexual Development, 2007, 1, 114-126.	2.0	25
123	Sex-specific expression of a novel gene Tmem184a during mouse testis differentiation. Reproduction, 2007, 133, 983-989.	2.6	16
124	Human Embryonic Stem Cell Research: An Australian Perspective. Cell, 2007, 128, 221-223.	28.9	7
125	<i>Dppa2</i> and <i>Dppa4</i> Are Closely Linked SAP Motif Genes Restricted to Pluripotent Cells and the Germ Line. Stem Cells, 2007, 25, 19-28.	3.2	109
126	Avian sex determination: what, when and where?. Cytogenetic and Genome Research, 2007, 117, 165-173.	1.1	65

#	Article	IF	CITATIONS
127	A Framework for the Prediction of Scale-Up When Using Compressible Chromatographic Packings. Biotechnology Progress, 2007, 23, 413-422.	2.6	22
128	DYNAMIC REGULATION OF CELL CYCLE AND PLURIPOTENCY IN THE FETAL MALE GERM LINE. Biology of Reproduction, 2007, 77, 72-72.	2.7	0
129	A framework for assessing the solutions in chromatographic process design and operation for large-scale manufacture. Journal of Chemical Technology and Biotechnology, 2006, 81, 1009-1020.	3.2	13
130	Temporal and spatial expression profile of the novelarmadillo-related gene,Alex2, during testicular differentiation in the mouse embryo. Developmental Dynamics, 2005, 233, 188-193.	1.8	18
131	Aromatase inhibition reduces expression of <i>FOXL2</i> in the embryonic chicken ovary. Developmental Dynamics, 2005, 233, 1052-1055.	1.8	120
132	Expression profile of the RNA-binding protein genehermes during chicken embryonic development. Developmental Dynamics, 2005, 233, 1045-1051.	1.8	19
133	Conserved expression of a novel gene during gonadal development. Developmental Dynamics, 2005, 233, 1083-1090.	1.8	8
134	Annexin XI co-localises with calcyclin in proliferating cells of the embryonic mouse testis. Developmental Dynamics, 2005, 234, 432-437.	1.8	14
135	Novel scavenger receptor gene is differentially expressed in the embryonic and adult mouse testis. Developmental Dynamics, 2005, 234, 1026-1033.	1.8	15
136	Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction, 2005, 130, 509-516.	2.6	48
137	A Long-term Outcome Study of Intersex Conditions. Journal of Pediatric Endocrinology and Metabolism, 2005, 18, 555-67.	0.9	139
138	Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Developmental Biology, 2005, 284, 337-350.	2.0	57
139	Second report on chicken genes and chromosomes 2005. Cytogenetic and Genome Research, 2005, 109, 415-479.	1.1	136
140	Pre-Sertoli Specific Gene Expression Profiling Reveals Differential Expression of Ppt1 and Brd3 Genes Within the Mouse Genital Ridge at the Time of Sex Determination1. Biology of Reproduction, 2004, 71, 820-827.	2.7	29
141	Eki2 is upregulated specifically in the testis during mouse sex determination. Gene Expression Patterns, 2004, 4, 135-140.	0.8	7
142	Sex determination: insights from the chicken. BioEssays, 2004, 26, 120-132.	2.5	303
143	Molecular genetics of gonad development. , 2004, , 9-21.		0
144	Sox15 is up regulated in the embryonic mouse testis. Gene Expression Patterns, 2003, 3, 413-417.	0.8	18

9

#	Article	IF	CITATIONS
145	Subtractive hybridisation screen identifies sexually dimorphic gene expression in the embryonic mouse gonad. Genesis, 2003, 37, 84-90.	1.6	44
146	Occasional Article. Journal of Paediatrics and Child Health, 2003, 39, 406-413.	0.8	38
147	Type II and Type IX Collagen Transcript Isoforms Are Expressed During Mouse Testis Development. Biology of Reproduction, 2003, 68, 1742-1747.	2.7	35
148	DMRT1 Is Upregulated in the Gonads During Female-to-Male Sex Reversal in ZW Chicken Embryos1. Biology of Reproduction, 2003, 68, 560-570.	2.7	161
149	Vertebrate sex determination: many means to an end. Reproduction, 2002, 124, 447-457.	2.6	161
150	Restricted expression of DMRT3 in chicken and mouse embryos. Mechanisms of Development, 2002, 119, S73-S76.	1.7	34
151	FET-1: a novel W-linked, female specific gene up-regulated in the embryonic chicken ovary. Mechanisms of Development, 2002, 119, S87-S90.	1.7	39
152	A comparative analysis of vertebrate sex determination. Novartis Foundation Symposium, 2002, 244, 102-11; discussion 111-4, 203-6, 253-7.	1.1	11
153	Rapid DNA extraction and PCR-sexing of mouse embryos. Molecular Reproduction and Development, 2001, 60, 225-226.	2.0	122
154	Sex, genes, and heat: Triggers of diversity. The Journal of Experimental Zoology, 2001, 290, 624-631.	1.4	31
155	Sex determination in the chicken embryo. The Journal of Experimental Zoology, 2001, 290, 691-699.	1.4	56
156	ASW : a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Development Genes and Evolution, 2000, 210, 243-249.	0.9	112
157	SOX14 is a candidate gene for limb defects associated with BPES and M�bius syndrome. Human Genetics, 2000, 106, 269-276.	3.8	15
158	Cloning and expression of a DAX1 homologue in the chicken embryo. Journal of Molecular Endocrinology, 2000, 24, 23-32.	2.5	57
159	Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene, 2000, 241, 223-232.	2.2	100
160	SOX14 is a candidate gene for limb defects associated with BPES and Möbius syndrome. Human Genetics, 2000, 106, 269-276.	3.8	17
161	SOX8 expression during chick embryogenesis. Mechanisms of Development, 2000, 94, 257-260.	1.7	42
162	Isolation and expression of a novel member of the CITED family. Mechanisms of Development, 2000, 95, 305-308.	1.7	20

#	Article	IF	CITATIONS
163	The Cell Biology and Molecular Genetics of Testis Determination. Results and Problems in Cell Differentiation, 2000, 28, 23-52.	0.7	3
164	Conservation of a sex-determining gene. Nature, 1999, 402, 601-602.	27.8	359
165	Expression of Chicken Steroidogenic Factor-1 during Gonadal Sex Differentiation. General and Comparative Endocrinology, 1999, 113, 187-196.	1.8	63
166	Temperature-dependent sex determination: Upregulation ofSOX9 expression after commitment to male development. Developmental Dynamics, 1999, 214, 171-177.	1.8	132
167	Temperature-dependent sex determination in the american alligator:AMH precedesSOX9 expression. Developmental Dynamics, 1999, 216, 411-419.	1.8	128
168	Kallmann syndrome gene (KAL-X) is not mutated in schizophrenia. , 1999, 88, 34-37.		7
169	Gene expression during gonadogenesis in the chicken embryo. Gene, 1999, 234, 395-402.	2.2	134
170	Temperature-dependent sex determination in the american alligator: AMH precedes SOX9 expression. , 1999, 216, 411.		2
171	Temperatureâ€dependent sex determination: Upregulation of SOX9 expression after commitment to male development. Developmental Dynamics, 1999, 214, 171-177.	1.8	3
172	Novel mutation in the SRY gene results in 46,XY gonadal dysgenesis. Human Mutation, 1998, 11, S110-S111.	2.5	4
173	Mutation analysis of the SOX9 gene in a patient with campomelic dysplasia. Human Mutation, 1998, 11, S112-S113.	2.5	21
174	Human sex determination. , 1998, 281, 501-505.		15
175	Isolation of rare transcripts by representational difference analysis. Nucleic Acids Research, 1997, 25, 2681-2682.	14.5	53
176	Gonadal Dysgenesis: Associations between Clinical Features and Sex of Rearing Endocrine Journal, 1997, 44, 95-104.	1.6	6
177	Conadal sex differentiation in chicken embryos: Expression of estrogen receptor and aromatase genes. Journal of Steroid Biochemistry and Molecular Biology, 1997, 60, 295-302.	2.5	154
178	Sites ofEstrogen ReceptorandAromataseExpression in the Chicken Embryo. General and Comparative Endocrinology, 1997, 108, 182-190.	1.8	169
179	Mutations inSRY andSOX9: Testis-determining genes. Human Mutation, 1997, 9, 388-395.	2.5	165
180	Mutations in SRY and SOX9: Testisâ€determining genes. Human Mutation, 1997, 9, 388-395.	2.5	18

#	Article	IF	CITATIONS
181	The testis determining gene, Sry. Advances in Genome Biology, 1996, 4, 29-51.	0.3	0
182	A novel germ line mutation in SOX9 causes familial campomelic dysplasia and sex reversal. Human Molecular Genetics, 1996, 5, 1625-1630.	2.9	82
183	A male-specific role for <i>SOX9</i> in vertebrate sex determination. Development (Cambridge), 1996, 122, 2813-2822.	2.5	623
184	Phosphoglycerate kinase pseudogenes in the tammar wallaby and other macropodid marsupials. Mammalian Genome, 1994, 5, 531-537.	2.2	7
185	SRY protein enhances transcription of Fos-related antigen 1 promoter constructs Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4372-4376.	7.1	68
186	The Cloning of SRY. , 1994, , 23-41.		5
187	The human <i>SRY</i> transcript. Human Molecular Genetics, 1993, 2, 2007-2012.	2.9	162
188	Fertile females of the mole <i>Talpa occidentalis</i> are phenotypic intersexes with ovotestes. Development (Cambridge), 1993, 118, 1303-1311.	2.5	53
189	Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature, 1992, 359, 531-533.	27.8	224
190	Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics, 1991, 11, 339-345.	2.9	48
191	Gene mapping in marsupials: Detection of an ancient autosomal gene cluster. Genomics, 1991, 9, 581-586.	2.9	15
192	Comparison of human ZFY and ZFX transcripts Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1681-1685.	7.1	87
193	A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346, 240-244.	27.8	3,014
194	Genetic evidence equating SRY and the testis-determining factor. Nature, 1990, 348, 448-450.	27.8	907
195	Genetic evidence that ZFY is not the testis-determining factor. Nature, 1989, 342, 937-939.	27.8	305
196	Analysis of In-situ Hybridization Data for Unique Genes Using GLIM. Biometrics, 1989, 45, 601.	1.4	8
197	Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature, 1988, 336, 780-783.	27.8	182
198	Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genetical Research, 1987, 50, 131-136.	0.9	36

IF

CITATIONS

ARTICLE

Design and Optimization of Manufacturing. , 0, , 263-291.