Jun Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493720/publications.pdf

Version: 2024-02-01

190 papers	6,051 citations	41 h-index	91884 69 g-index
198	198	198	5130
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Isolation and characterization of the ï‰3-docosapentaenoic acid-producing microorganism Aurantiochytrium sp. T7. Journal of Bioscience and Bioengineering, 2022, 133, 229-234.	2.2	1
2	Microbial production of hydroxy fatty acids utilizing crude glycerol. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102286.	3.1	1
3	Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunology, 2022, 15, 289-300.	6.0	16
4	<scp> </scp> -Tryptophan-starved cultivation enhances <i>S</i> -allyl- <scp> </scp> -cysteine synthesis in various food-related microorganisms. Bioscience, Biotechnology and Biochemistry, 2022, 86, 792-799.	1.3	2
5	Isolation and characterization of indigo-reducing bacteria and analysis of microbiota from indigo fermentation suspensions. Bioscience, Biotechnology and Biochemistry, 2022, 86, 273-281.	1.3	4
6	Semiâ€rational Engineering of a Promiscuous Fatty Acid Hydratase for Alteration of Regioselectivity. ChemBioChem, 2022, 23, e202100606.	2.6	4
7	Generation of Fusarium oxysporum-suppressive soil with non-soil carriers using a multiple-parallel-mineralization technique. Scientific Reports, 2022, 12, 7968.	3.3	1
8	Quantification of leuco-indigo in indigo-dye-fermenting suspension by normal pulse voltammetry. Journal of Bioscience and Bioengineering, 2022, 134, 84-88.	2.2	3
9	Identification of tryptophanase from Escherichia coli for the synthesis of S-allyl-l-cysteine and related S-substituted cysteine derivatives. Journal of Bioscience and Bioengineering, 2022, 134, 182-186.	2.2	1
10	Characterization of regioselective glycosyltransferase of Rhizobium pusense JCM 16209T useful for resveratrol 4′-O-α-d-glucoside production. Journal of Bioscience and Bioengineering, 2022, 134, 213-219.	2.2	5
11	Characterization of xanthine oxidase from Cellulosimicrobium funkei possessing hypoxanthineâ€metabolizing activity. Journal of Applied Microbiology, 2021, 130, 2132-2140.	3.1	O
12	Mechanistic Insights into Indigo Reduction in Indigo Fermentation: A Voltammetric Study. Electrochemistry, 2021, 89, 25-30.	1.4	14
13	Characterization of I‰3 fatty acid desaturases from oomycetes and their application toward eicosapentaenoic acid production in <i>Mortierella alpina</i> Bioscience, Biotechnology and Biochemistry, 2021, 85, 1252-1265.	1.3	2
14	Voltammetric in-situ monitoring of leuco-indigo in indigo-fermenting suspensions. Journal of Bioscience and Bioengineering, 2021, 131, 565-571.	2.2	3
15	Medium-chain triglycerides inhibit long-chain triglyceride-induced GIP secretion through GPR120-dependent inhibition of CCK. IScience, 2021, 24, 102963.	4.1	11
16	A three-component monooxygenase from Rhodococcus wratislaviensis may expand industrial applications of bacterial enzymes. Communications Biology, 2021, 4, 16.	4.4	6
17	Enzyme systems involved in glucosinolate metabolism in Companilactobacillus farciminis KB1089. Scientific Reports, 2021, 11, 23715.	3.3	8
18	A bacterial metabolite induces Nrf2-mediated anti-oxidative responses in gingival epithelial cells by activating the MAPK signaling pathway. Archives of Oral Biology, 2020, 110, 104602.	1.8	18

#	Article	IF	CITATIONS
19	Rational Engineering of Hydratase from <i>Lactobacillus acidophilus </i> Reveals Critical Residues Directing Substrate Specificity and Regioselectivity. ChemBioChem, 2020, 21, 550-563.	2.6	23
20	A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Scientific Reports, 2020, 10, 13009.	3.3	38
21	The anti-inflammatory effect of the gut lactic acid bacteria-generated metabolite 10-oxo-cis-6,trans-11-octadecadienoic acid on monocytes. Biochemical and Biophysical Research Communications, 2020, 530, 342-347.	2.1	5
22	Purification and characterization of molybdenum-containing aldehyde dehydrogenase that oxidizes benzyl maltol derivative from <i>Pseudomonas nitroreducens</i> SB32154. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2390-2400.	1.3	2
23	Fermentative Production of Oils Rich in Polyunsaturated Fatty Acids by the Molecularly Bred Strains of <i>Mortierella alpina</i> 1S-4. Oleoscience, 2020, 20, 103-109.	0.0	0
24	Gut microbial fatty acid metabolites (KetoA and KetoC) affect the progression of nonalcoholic steatohepatitis and reverse cholesterol transport metabolism in mouse model. Lipids, 2020, 55, 151-162.	1.7	6
25	Evaluation of electron-transferring cofactor mediating enzyme systems involved in urolithin dehydroxylation in Gordonibacter urolithinfaciens DSM 27213. Journal of Bioscience and Bioengineering, 2020, 129, 552-557.	2.2	11
26	Application of Enzymatic Reactions Involving Electron Transfer and Energy Supply for the Production of Useful Chemicals., 2020,, 101-119.		0
27	Antimicrobial function of the polyunsaturated fatty acid KetoC in an experimental model of periodontitis. Journal of Periodontology, 2019, 90, 1470-1480.	3.4	15
28	Gut microbial metabolites of linoleic acid are metabolized by accelerated peroxisomal \hat{l}^2 -oxidation in mammalian cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1619-1628.	2.4	7
29	Functional Analysis and Application of Food Lipid Metabolites Produced by Gut Microorganisms. Oleoscience, 2019, 19, 133-138.	0.0	0
30	Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications, 2019, 10, 4007.	12.8	231
31	Microbial Cyclic Imide Metabolism and Its Biotechnological Application. , 2019, , 65-90.		0
32	Cloning of a novel gene involved in alkane biosynthesis from Klebsiella sp. Applied Microbiology and Biotechnology, 2019, 103, 5917-5923.	3.6	1
33	Cobalt-dependent inhibition of nitrite oxidation in Nitrobacter winogradskyi. Journal of Bioscience and Bioengineering, 2019, 128, 463-467.	2.2	4
34	16S rRNA Gene Amplicon Sequencing of Microbiota in Polybutylene Succinate Adipate-Packed Denitrification Reactors Used for Water Treatment of Land-Based Recirculating Aquaculture Systems. Microbiology Resource Announcements, 2019, 8, .	0.6	4
35	Production of prostaglandin F2α by molecular breeding of an oleaginous fungus Mortierella alpina. Bioscience, Biotechnology and Biochemistry, 2019, 83, 774-780.	1.3	1
36	Effects of alkyl gallates, fatty acids, and acylglycerols on the growth of the psychrotolerant bacterium Sporosarcina sp. S92h. Biocatalysis and Agricultural Biotechnology, 2019, 17, 294-298.	3.1	2

#	Article	IF	CITATIONS
37	Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review. Journal of Advanced Research, 2018, 11, 15-22.	9.5	62
38	Attempt to simultaneously generate three chiral centers in 4-hydroxyisoleucine with microbial carbonyl reductases. Bioorganic and Medicinal Chemistry, 2018, 26, 1327-1332.	3.0	3
39	New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of $2\hat{a}\in^2$ -O-methylribonucleosides. Journal of Bioscience and Bioengineering, 2018, 125, 38-45.	2.2	6
40	A search for microorganisms producing medium-chain alkanes from aldehydes. Journal of Bioscience and Bioengineering, 2018, 125, 87-91.	2.2	5
41	αâ€Linolenic acidâ€derived metabolites from gut lactic acid bacteria induce differentiation of antiâ€nflammatory M2 macrophages through G proteinâ€coupled receptor 40. FASEB Journal, 2018, 32, 304-318.	0.5	69
42	Electrochemical Study on the Extracellular Electron Transfer Pathway from Shewanella Strain Hac319 to Electrodes. Analytical Sciences, 2018, 34, 1177-1182.	1.6	6
43	Inhibitory effect of the gut microbial linoleic acid metabolites, 10-oxo-trans-11-octadecenoic acid and 10-hydroxy-cis-12-octadecenoic acid, on BV-2 microglial cell activation. Journal of Pharmacological Sciences, 2018, 138, 9-15.	2.5	22
44	Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense. PLoS ONE, 2018, 13, e0202164.	2.5	18
45	Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxoâ€Fatty Acids Produced by Gut Bacteria Are Responsible for CCK Secretion in STCâ€1 Cells via GPR40. Molecular Nutrition and Food Research, 2018, 62, e1800146.	3.3	15
46	Hydratase, Dehydrogenase, Isomerase, and Enone Reductase Involved in Fatty Acid Saturation Metabolism., 2018, , 119-137.		1
47	A bacterial metabolite ameliorates periodontal pathogen-induced gingival epithelial barrier disruption via GPR40 signaling. Scientific Reports, 2018, 8, 9008.	3.3	42
48	Inhibitory effect of the gut microbial linoleic acid metabolites on BV-2 microglial cell activation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-1-110.	0.0	0
49	Enzymatic synthesis of 2′- O -methylribonucleosides with a nucleoside hydrolase family enzyme from Lactobacillus buchneri LBK78. Journal of Bioscience and Bioengineering, 2017, 123, 659-664.	2.2	5
50	Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy- <i>cis</i> :-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice. International Journal of Food Sciences and Nutrition, 2017, 68, 941-951.	2.8	61
51	Synthesized enone fatty acids resembling metabolites from gut microbiota suppress macrophageâ€mediated inflammation in adipocytes. Molecular Nutrition and Food Research, 2017, 61, 1700064.	3.3	36
52	Modulation of fatty acid composition and growth in Sporosarcina species in response to temperatures and exogenous branched-chain amino acids. Applied Microbiology and Biotechnology, 2017, 101, 5071-5080.	3.6	5
53	Engineering a short-chain dehydrogenase/reductase for the stereoselective production of (2S,3R,4S)-4-hydroxyisoleucine with three asymmetric centers. Scientific Reports, 2017, 7, 13703.	3.3	11
54	Engineering of the cytochrome P450 monooxygenase system for benzyl maltol hydroxylation. Applied Microbiology and Biotechnology, 2017, 101, 6651-6658.	3.6	10

#	Article	IF	CITATIONS
55	10â€oxoâ€12(<i>Z</i>) îâ€octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB Journal, 2017, 31, 5036-5048.	0.5	65
56	Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresource Technology, 2017, 245, 1610-1615.	9.6	26
57	Draft Genome Sequences of the Xylose-Fermenting Yeast <i>Scheffersomyces shehatae</i> NBRC 1983 ^T and a Thermotolerant Isolate of <i>S. shehatae</i> ATY839 (JCM 18690). Genome Announcements, 2017, 5, .	0.8	2
58	Novel fatty acid metabolism in lactic acid bacteria and the physiological function of metabolites . Japanese Journal of Lactic Acid Bacteria, 2017, 28, 58-65.	0.1	0
59	Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from <i>Lactobacillus plantarum</i> AKU 1009a. Journal of Applied Microbiology, 2016, 120, 1282-1288.	3.1	41
60	Lipid production through simultaneous utilization of glucose, xylose, and l-arabinose by Pseudozyma hubeiensis: a comparative screening study. AMB Express, 2016, 6, 58.	3.0	32
61	Production of ricinoleic acid-containing monoestolide triacylglycerides in an oleaginous diatom, Chaetoceros gracilis. Scientific Reports, 2016, 6, 36809.	3.3	15
62	A novel nucleoside hydrolase from <i>Lactobacillus buchneri</i> LBK78 catalyzing hydrolysis of 2′- <i>O</i> -methylribonucleosides. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1568-1576.	1.3	4
63	Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2132-2137.	1.3	10
64	Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2247-2254.	1.3	29
65	Novel Enzyme Family Found in Filamentous Fungi Catalyzing <i>trans</i> -4-Hydroxylation of <scp>I</scp> -Pipecolic Acid. Applied and Environmental Microbiology, 2016, 82, 2070-2077.	3.1	33
66	Microbial production of dihomo-l̂3-linolenic acid by l̂"5-desaturase gene-disruptants of Mortierella alpina 1S-4. Journal of Bioscience and Bioengineering, 2016, 122, 22-26.	2.2	21
67	10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicology and Applied Pharmacology, 2016, 296, 1-9.	2.8	43
68	New lipid science in our inner ecosystem. European Journal of Lipid Science and Technology, 2015, 117, 577-578.	1.5	9
69	Characterization of hydroxy fatty acid dehydrogenase involved in polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. Journal of Molecular Catalysis B: Enzymatic, 2015, 117, 7-12.	1.8	11
70	Characterization of the linoleic acid \hat{i} "9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. Journal of Bioscience and Bioengineering, 2015, 119, 636-641.	2.2	67
71	Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to aceticÂacid. Journal of Bioscience and Bioengineering, 2015, 119, 172-175.	2.2	27
72	Isolation and characterization of psychrotolerant endospore-forming Sporosarcina species associated with minced fish meat (surimi). International Journal of Food Microbiology, 2015, 199, 15-22.	4.7	15

#	Article	IF	CITATIONS
73	Multiâ€Enzymatic Synthesis of Optically Pure βâ€Hydroxy αâ€Amino Acids. Advanced Synthesis and Catalysis, 2015, 357, 767-774.	4.3	38
74	Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing. Scientific Reports, 2015, 5, 9593.	3.3	43
7 5	A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. Journal of Lipid Research, 2015, 56, 1340-1350.	4.2	74
76	A new aldehyde oxidase catalyzing the conversion of glycolaldehyde to glycolate from Burkholderia sp. AlU 129. Journal of Bioscience and Bioengineering, 2015, 119, 410-415.	2.2	6
77	Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Current Genetics, 2015, 61, 579-589.	1.7	11
78	Omega-3 eicosatetraenoic acid production by molecular breeding of the mutant strain S14 derived from Mortierella alpina 1S-4. Journal of Bioscience and Bioengineering, 2015, 120, 299-304.	2.2	16
79	A Gut Microbial Metabolite of Linoleic Acid, 10-Hydroxy-cis-12-octadecenoic Acid, Ameliorates Intestinal Epithelial Barrier Impairment Partially via GPR40-MEK-ERK Pathway. Journal of Biological Chemistry, 2015, 290, 2902-2918.	3.4	189
80	Transformation of Zygomycete Mortierella alpina Using Biolistic Particle Bombardment. Fungal Biology, 2015, , 135-140.	0.6	2
81	Eicosapentaenoic acid (EPA) production by an oleaginous fungus ⟨i>Mortierella alpina⟨/i> expressing heterologous the Δ17â€desaturase gene under ordinary temperature. European Journal of Lipid Science and Technology, 2015, 117, 1919-1927.	1.5	42
82	10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPAR \hat{I}^3 and stimulates adipogenesis. Biochemical and Biophysical Research Communications, 2015, 459, 597-603.	2.1	59
83	Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes. Lipids, 2015, 50, 1093-1102.	1.7	32
84	Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs. Applied Microbiology and Biotechnology, 2015, 99, 9961-9969.	3.6	7
85	Disruption of lig4 improves gene targeting efficiency in the oleaginous fungus Mortierella alpina 1S-4. Journal of Biotechnology, 2015, 208, 63-69.	3.8	13
86	Lactic acid bacteria-containing chocolate as a practical probiotic product with increased acid tolerance. Biocatalysis and Agricultural Biotechnology, 2015, 4, 773-777.	3.1	27
87	The Case for an Early Biological Origin of DNA. Journal of Molecular Evolution, 2014, 79, 204-212.	1.8	25
88	Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria. Journal of Lipid Research, 2014, 55, 1855-1863.	4.2	31
89	Structural optimization of SadA, an Fe(II)- and α-ketoglutarate-dependent dioxygenase targeting biocatalytic synthesis of N-succinyl-l-threo-3,4-dimethoxyphenylserine. Biochemical and Biophysical Research Communications, 2014, 450, 1458-1461.	2.1	15
90	Characterization of a novel l-amino acid oxidase with protein oxidizing activity from Penicillium steckii AIU 027. Journal of Bioscience and Bioengineering, 2014, 117, 690-695.	2.2	3

#	Article	IF	Citations
91	Novel alcohol oxidase with glycolate oxidase activity from Ochrobactrum sp. AIU 033. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 41-48.	1.8	12
92	\hat{l}^2 -Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30. Applied Microbiology and Biotechnology, 2014, 98, 4021-4032.	3.6	42
93	Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/ \hat{I} ±-ketoglutarate-dependent dioxygenase superfamily. Applied Microbiology and Biotechnology, 2014, 98, 3869-3876.	3.6	42
94	Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S-4. Current Genetics, 2014, 60, 183-191.	1.7	13
95	Characterization of galactose-dependent promoters from an oleaginous fungus Mortierella alpina 1S-4. Current Genetics, 2014, 60, 175-182.	1.7	8
96	Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technology, 2014, 153, 230-235.	9.6	87
97	Production of a pharmaceutical intermediate via biohydroxylation using whole cells of Rhodococcus rubropertinctus N82. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1772-1776.	1.3	3
98	Achlorophyllous alga Prototheca zopfii oxidizes n-alkanes with different carbon-chain lengths through a unique subterminal oxidation pathway. Journal of Bioscience and Bioengineering, 2014, 117, 275-277.	2.2	0
99	Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing. Scientific Reports, 2014, 4, 4776.	3.3	61
100	Microbial Production of Functional Polyunsaturated Fatty Acids and Their Derivatives., 2014,, 207-218.		0
101	Novel Functional Lipid Development Based on the Analysis of Gut Microbial Lipid Metabolism. Oleoscience, 2014, 14, 375-380.	0.0	0
102	Enzymatic synthesis of chiral amino acid sulfoxides by Fe(II)/ \hat{l} ±-ketoglutarate-dependent dioxygenase. Tetrahedron: Asymmetry, 2013, 24, 990-994.	1.8	18
103	l-Leucine 5-hydroxylase of Nostoc punctiforme is a novel type of Fe(II)/α-ketoglutarate-dependent dioxygenase that is useful as a biocatalyst. Applied Microbiology and Biotechnology, 2013, 97, 2467-2472.	3.6	44
104	Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. Journal of Bioscience and Bioengineering, 2013, 116, 417-422.	2.2	73
105	Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17808-17813.	7.1	305
106	Isolation and Characterization of a Docosahexaenoic Acidâ€Phospholipids Producing Microorganism ⟨i>Crypthecodinium⟨ i> sp. D31. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1837-1844.	1.9	11
107	Hydroxy fatty acid production byPediococcussp European Journal of Lipid Science and Technology, 2013, 115, 386-393.	1.5	24
108	Characterization of a new enzyme oxidizing ï‰-amino group of aminocarboxyric acid, aminoalcohols and amines from Phialemonium sp. AlU 274. Journal of Molecular Catalysis B: Enzymatic, 2013, 96, 89-95.	1.8	3

#	Article	IF	CITATIONS
109	Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system. Journal of Bioscience and Bioengineering, 2013, 116, 672-676.	2.2	30
110	A novel <scp>l</scp> â€isoleucineâ€4′â€dioxygenase and <scp>l</scp> â€isoleucine dihydroxylation cascade in <i>Pantoea ananatis</i> . MicrobiologyOpen, 2013, 2, 471-481.	3.0	11
111	Crystal Structure of a Novel N-Substituted L-Amino Acid Dioxygenase from Burkholderia ambifaria AMMD. PLoS ONE, 2013, 8, e63996.	2.5	19
112	Polyunsaturated fatty acids production and transformation by <i>Mortierella alpina</i> and anaerobic bacteria. European Journal of Lipid Science and Technology, 2012, 114, 1107-1113.	1.5	10
113	Construction of microbial platform for an energy-requiring bioprocess: practical 2′-deoxyribonucleoside production involving a C−C coupling reaction with high energy substrates. Microbial Cell Factories, 2012, 11, 82.	4.0	11
114	Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Applied Microbiology and Biotechnology, 2012, 94, 939-948.	3.6	39
115	Extracellular oxidases of Cerrena sp. complementarily functioning in artificial dye decolorization including laccase, manganese peroxidase, and novel versatile peroxidases. Biocatalysis and Agricultural Biotechnology, 2012, 1, 220-225.	3.1	20
116	Oxidative pyrimidine metabolism in Rhodococcus erythropolis useful for valuable nucleoside synthesis: Discovery of a novel amidohydorolase, ureidomalonase. Biocatalysis and Agricultural Biotechnology, 2012, 1, 264-266.	3.1	3
117	\hat{l}^2 -Aryl- \hat{l}^2 -amino acid aminotransferase from Variovorax sp. JH2 is useful for enantioselective \hat{l}^2 -phenylalanine production. Biocatalysis and Agricultural Biotechnology, 2012, 1, 253-258.	3.1	4
118	A novel family of bacterial dioxygenases that catalyse the hydroxylation of free l-amino acids. FEMS Microbiology Letters, 2012, 331, 97-104.	1.8	30
119	Production of Microbial Lipids Containing Arachidonic Acid and Its Related Polyunsaturated Fatty Acids. Oleoscience, 2012, 12, 263-272.	0.0	1
120	Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C C double bond migration useful for conjugated fatty acid synthesis. Biochemical and Biophysical Research Communications, 2011, 416, 188-193.	2.1	52
121	A novel l-isoleucine metabolism in Bacillus thuringiensis generating (2S,3R,4S)-4-hydroxyisoleucine, a potential insulinotropic and anti-obesity amino acid. Applied Microbiology and Biotechnology, 2011, 89, 1929-1938.	3.6	50
122	Linoleic Acid Isomerase in <i>Lactobacillus plantarum</i> AKU1009a Proved to Be a Multi-Component Enzyme System Requiring Oxidoreduction Cofactors. Bioscience, Biotechnology and Biochemistry, 2011, 75, 318-322.	1.3	51
123	Characterization of Bacillus thuringiensis <scp>l</scp> -Isoleucine Dioxygenase for Production of Useful Amino Acids. Applied and Environmental Microbiology, 2011, 77, 6926-6930.	3.1	78
124	Metabolic engineering of Escherichia coli to produce (2S, 3R, 4S)-4-hydroxyisoleucine. Applied Microbiology and Biotechnology, 2010, 88, 719-726.	3.6	70
125	Two laccase isoenzymes and a peroxidase of a commercial laccase-producing basidiomycete, Trametes sp. Ha1. New Biotechnology, 2010, 27, 317-323.	4.4	14
126	Arachidonic Acid-Producing Mortierella alpina: Creation of Mutants, Isolation of the Related Enzyme Genes, and Molecular Breeding., 2010,, 29-49.		5

#	Article	IF	CITATIONS
127	Establishment of <i>Agrobacterium tumefaciens</i> -Mediated Transformation of an Oleaginous Fungus, <i>Mortierella alpina</i> 1S-4, and Its Application for Eicosapentaenoic Acid Producer Breeding. Applied and Environmental Microbiology, 2009, 75, 5529-5535.	3.1	100
128	Enantioselective ester hydrolase from Sphingobacterium sp. 238C5 useful for chiral resolution of \hat{l}^2 -phenylalanine and for its \hat{l}^2 -peptide synthesis. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 138-144.	1.8	7
129	Microbial production of conjugated fatty acids. Lipid Technology, 2009, 21, 177-181.	0.3	24
130	Fatty Acid Desaturation and Elongation Reactions of <i>Trichoderma</i> sp. 1â€OHâ€2â€3. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 227-233.	1.9	5
131	Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Applied Microbiology and Biotechnology, 2009, 84, 87-97.	3.6	60
132	Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Applied Microbiology and Biotechnology, 2009, 84, 1-10.	3.6	96
133	Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron–sulfur subunit of succinate dehydrogenase. Current Genetics, 2009, 55, 349-356.	1.7	27
134	Screening and characterization of a phosphopentomutase useful for enzymatic production of 2′-deoxyribonucleoside. New Biotechnology, 2009, 26, 75-82.	4.4	8
135	A novel l-isoleucine hydroxylating enzyme, l-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S,3R,4S)-4-hydroxyisoleucine. Biochemical and Biophysical Research Communications, 2009, 390, 506-510.	2.1	70
136	Retrobiosynthetic Production of $2\hat{A}$ -Deoxyribonucleoside from Glucose, Acetaldehyde, and Nucleobase through Multistep Enzymatic Reactions., 2009, , 269-278.		0
137	Synthesis of 4-Hydroxyisoleucine by the Aldolase–Transaminase Coupling Reaction and Basic Characterization of the Aldolase fromArthrobacter simplexAKU 626. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1607-1615.	1.3	37
138	A novel strategy for enzymatic synthesis of 4-hydroxyisoleucine: identification of an enzyme possessing HMKP (4-hydroxy-3-methyl-2-keto-pentanoate) aldolase activity. FEMS Microbiology Letters, 2007, 273, 70-77.	1.8	37
139	Efficient Production of 2-Deoxyribose 5-Phosphate from Glucose and Acetaldehyde by Coupling of the Alcoholic Fermentation System of Baker's Yeast and Deoxyriboaldolase-ExpressingEscherichia coli. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1371-1378.	1.3	22
140	Screening and Industrial Application of Unique Microbial Reactions Involved in Nucleic Acid and Lipid Metabolisms. Bioscience, Biotechnology and Biochemistry, 2006, 70, 574-582.	1.3	14
141	One-pot Microbial Synthesis of 2′-deoxyribonucleoside from Glucose, Acetaldehyde, and a Nucleobase. Biotechnology Letters, 2006, 28, 877-881.	2.2	19
142	Microbial production of optically active \hat{l}^2 -phenylalanine ethyl ester through stereoselective hydrolysis of racemic \hat{l}^2 -phenylalanine ethyl ester. Applied Microbiology and Biotechnology, 2006, 70, 663-669.	3.6	7
143	Biochemical retrosynthesis of $2\hat{a}\in^2$ -deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase. Applied Microbiology and Biotechnology, 2006, 71, 615-621.	3 . 6	32
144	Microbial Production of Optically Active Î ² -Phenylalanine through Stereoselective Degradation of Racemic Î ² -Phenylalanine. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1941-1946.	1.3	8

#	Article	IF	CITATIONS
145	Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds. Applied Microbiology and Biotechnology, 2005, 67, 556-562.	3.6	56
146	Indole Hydroxylation by Bacterial Cytochrome P450 BM-3 and Modulation of Activity by Cumene Hydroperoxide. Bioscience, Biotechnology and Biochemistry, 2005, 69, 293-300.	1.3	39
147	Production of conjugated fatty acids by lactic acid bacteria. Journal of Bioscience and Bioengineering, 2005, 100, 355-364.	2.2	235
148	Improvement of arachidonic acid production by mutants with lower n-3 desaturation activity derived from Mortierella alpina 1S-4. Applied Microbiology and Biotechnology, 2004, 66, 243-248.	3.6	35
149	Characterization of alkaliphilic laccase activity in the culture supernatant of Myrothecium verrucaria 24G-4 in comparison with bilirubin oxidase. FEMS Microbiology Letters, 2004, 230, 209-214.	1.8	66
150	Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enzyme and Microbial Technology, 2004, 35, 40-45.	3.2	50
151	Two extracellular proteins with alkaline peroxidase activity, a novel cytochrome c and a catalase-peroxidase, from Bacillus sp. No.13. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1699, 65-75.	2.3	4
152	CLA production from ricinoleic acid by lactic acid bacteria. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 889-894.	1.9	43
153	Conjugatedα-linolenic acid production fromα-linolenic acid byLactobacillus plantarum AKU 1009a. European Journal of Lipid Science and Technology, 2003, 105, 572-577.	1.5	25
154	Structural Analysis of Conjugated Linoleic Acid Produced byLactobacillus plantarum, and Factors Affecting Isomer Production. Bioscience, Biotechnology and Biochemistry, 2003, 67, 179-182.	1.3	48
155	Construction of Deoxyriboaldolase-Overexpressing Escherichia coli and Its Application to 2-Deoxyribose 5-Phosphate Synthesis from Glucose and Acetaldehyde for 2′-Deoxyribonucleoside Production. Applied and Environmental Microbiology, 2003, 69, 3791-3797.	3.1	38
156	Microbial Production of 2-Deoxyribose 5-Phosphate from Acetaldehyde and Triosephosphate for the Synthesis of 2′-Deoxyribonucleosides. Bioscience, Biotechnology and Biochemistry, 2003, 67, 933-936.	1.3	33
157	Production of Functional Lipids by Microorganisms. Oleoscience, 2003, 3, 129-139,128.	0.0	7
158	Ricinoleic Acid and Castor Oil as Substrates for Conjugated Linoleic Acid Production by Washed Cells of Lactobacillus plantarum. Bioscience, Biotechnology and Biochemistry, 2002, 66, 2283-2286.	1.3	67
159	Bilirubin Dehydrogenase, an Enzyme inAspergillus ochraceusIB-3 Useful for Diagnostic Measurement of Bilirubin. Bioscience, Biotechnology and Biochemistry, 2002, 66, 2376-2381.	1.3	0
160	Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 159-163.	1.9	155
161	Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Current Opinion in Biotechnology, 2002, 13, 367-375.	6.6	93
162	Critical Role of the Residue Size at Position 87 in H2O2-Dependent Substrate Hydroxylation Activity and H2O2 Inactivation of Cytochrome P450BM-3. Biochemical and Biophysical Research Communications, 2001, 280, 1258-1261.	2.1	76

#	Article	IF	CITATIONS
163	Novel Amidohydrolytic Reactions in Oxidative Pyrimidine Metabolism: Analysis of the Barbiturase Reaction and Discovery of a Novel Enzyme, Ureidomalonase. Biochemical and Biophysical Research Communications, 2001, 286, 222-226.	2.1	28
164	Residue size at position 87 of cytochrome P450 BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation. FEBS Letters, 2001, 508, 249-252.	2.8	76
165	Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2′-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. Journal of Electroanalytical Chemistry, 2001, 496, 69-75.	3.8	232
166	Cyclic ureide and imide metabolism in microorganisms producing a d-hydantoinase useful for d-amino acid production. Journal of Molecular Catalysis B: Enzymatic, 2001, 12, 61-70.	1.8	9
167	Engineering Cytochrome P450 BM-3 for Oxidation of Polycyclic Aromatic Hydrocarbons. Applied and Environmental Microbiology, 2001, 67, 5735-5739.	3.1	151
168	Purification, Characterization, and Gene Cloning of Purine Nucleosidase from Ochrobactrum anthropi. Applied and Environmental Microbiology, 2001, 67, 1783-1787.	3.1	34
169	Conjugated Linoleic Acid Accumulation via 10-Hydroxy-12-Octadecaenoic Acid during Microaerobic Transformation of Linoleic Acid by Lactobacillus acidophilus. Applied and Environmental Microbiology, 2001, 67, 1246-1252.	3.1	184
170	A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides. Applied and Environmental Microbiology, 2000, 66, 1947-1952.	3.1	14
171	Stereoselective Synthesis Using Hydantoinases and Carbamoylases. , 2000, , 1-21.		1
172	Coordinate induction of peroxidase and H2O2-forming nucleoside oxidase inFlavobacterium meningosepticum. FEMS Microbiology Letters, 1999, 175, 113-117.	1.8	4
173	Stereoinversion of optically active 3-pentyn-2-ol by Nocardia species. Biotechnology Letters, 1999, 21, 331-335.	2.2	18
174	Title is missing!. Biotechnology Letters, 1999, 21, 711-713.	2.2	5
175	Production of 8,11-cis-eicosadienoic acid by a \hat{l} "5 and \hat{l} "12 desaturase-defective mutant derived from the arachidonic acid-producing fungusMortierella alpina1S-4. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1269-1274.	1.9	18
176	Novel bacterial peroxidase without catalase activity from Flavobacterium meningosepticum: purification and characterization. BBA - Proteins and Proteomics, 1999, 1435, 117-126.	2.1	18
177	Distribution of cyclic imide-transforming activity in microorganisms. FEMS Microbiology Letters, 1998, 158, 51-55.	1.8	16
178	Production of 8,11,14,17-cis-eicosatetraenoic acid (20:4ï‰-3) by a î"5 and î"12 desaturase-defective mutant of an arachidonic acid-producing fungusMortierella alpina1S-4. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 1495-1500.	1.9	14
179	Distribution of cyclic imide-transforming activity in microorganisms. FEMS Microbiology Letters, 1998, 158, 51-55.	1.8	1
180	Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Advances in Biochemical Engineering/Biotechnology, 1997, 58, 45-87.	1.1	35

#	ARTICLE	IF	CITATIONS
181	Diversity and versatility of microbial hydantoin-transforming enzymes. Journal of Molecular Catalysis B: Enzymatic, 1997, 2, 163-176.	1.8	68
182	Imidase, a Dihydropyrimidinase-Like Enzyme Involved in the Metabolism of Cyclic Imides. FEBS Journal, 1997, 243, 322-327.	0.2	37
183	Purification and Characterization of an ATP-dependent Amidohydrolase, N-methylhydantoin Amidohydrolase, from Pseudomonas putida 77. FEBS Journal, 1995, 229, 284-290.	0.2	37
184	Purification and characterization of dihydroorotase fromPseudomonas putida. Archives of Microbiology, 1995, 164, 353-357.	2.2	17
185	Diversity of Cyclic Ureide Compound-, Dihydropyrimidine-, and Hydantoin-hydrolyzing Enzymes inBlastobactersp. A17p-4. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1960-1962.	1.3	16
186	Purification and characterization of dihydroorotase from Pseudomonas putida. Archives of Microbiology, 1995, 164, 353-357.	2.2	1
187	beta-Ureidopropionase with N-carbamoyl-alpha-l-amino acid amidohydrolase activity from an aerobic bacterium, Pseudomonas putida IFO 12996. FEBS Journal, 1994, 223, 625-630.	0.2	53
188	Thermostable N-carbamoyl-d-amino acid amidohydrolase: screening, purification and characterization. Journal of Biotechnology, 1994, 38, 11-19.	3.8	79
189	N-Carbamoyl-d-amino acid amidohydrolase from Comamonas sp. E222c Purification and characterization. FEBS Journal, 1993, 212, 685-691.	0.2	62
190	Purification and characterization of a novel enzyme, arylalkyl acylamidase, from Pseudomonas putida Sc2. FEBS Journal, 1992, 209, 375-382.	0.2	17