Jun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493601/publications.pdf

Version: 2024-02-01

298	16,101	69	112
papers	citations	h-index	g-index
307	307	307	14127 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie - International Edition, 2009, 48, 9457-9460.	13.8	1,272
2	Gas storage in porous aromatic frameworks (PAFs). Energy and Environmental Science, 2011, 4, 3991.	30.8	429
3	Brønsted/Lewis Acid Synergy in Dealuminated HY Zeolite:  A Combined Solid-State NMR and Theoretical Calculation Study. Journal of the American Chemical Society, 2007, 129, 11161-11171.	13.7	349
4	A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. Journal of the American Chemical Society, 2016, 138, 8120-8125.	13.7	340
5	Roles for Cyclopentenyl Cations in the Synthesis of Hydrocarbons from Methanol on Zeolite Catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122, 4763-4775.	13.7	296
6	³¹ P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 2017, 117, 12475-12531.	47.7	258
7	Sustainable Synthesis of Zeolites without Addition of Both Organotemplates and Solvents. Journal of the American Chemical Society, 2014, 136, 4019-4025.	13.7	233
8	Understanding the High Photocatalytic Activity of (B, Ag)-Codoped TiO ₂ under Solar-Light Irradiation with XPS, Solid-State NMR, and DFT Calculations. Journal of the American Chemical Society, 2013, 135, 1607-1616.	13.7	230
9	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	13.8	221
10	Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes. Advanced Materials, 2017, 29, 1605512.	21.0	214
11	Solventâ€Free Synthesis of Silicoaluminophosphate Zeolites. Angewandte Chemie - International Edition, 2013, 52, 9172-9175.	13.8	212
12	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	38.1	211
13	Direct Observation of Cyclic Carbenium Ions and Their Role in the Catalytic Cycle of the Methanolâ€toâ€Olefin Reaction over Chabazite Zeolites. Angewandte Chemie - International Edition, 2013, 52, 11564-11568.	13.8	193
14	Multimodal Luminescent Yb ³⁺ /Er ³⁺ /Bi ³⁺ â€Doped Perovskite Single Crystals for Xâ€ray Detection and Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2004506.	21.0	187
15	Solvent-Free Synthesis of Zeolites from Anhydrous Starting Raw Solids. Journal of the American Chemical Society, 2015, 137, 1052-1055.	13.7	178
16	Acidic Properties and Structure–Activity Correlations of Solid Acid Catalysts Revealed by Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2016, 49, 655-663.	15.6	177
17	Insights into the Dealumination of Zeoliteâ€HY Revealed by Sensitivityâ€Enhanced ²⁷ Al DQâ€MAS NMR Spectroscopy at High Field. Angewandte Chemie - International Edition, 2010, 49, 8657-8661.	3 13.8	173
18	Evidence of Pressure Enhanced CO ₂ Storage in ZIF-8 Probed by FTIR Spectroscopy. Journal of the American Chemical Society, 2013, 135, 9287-9290.	13.7	171

#	Article	IF	CITATIONS
19	Boron Environments in B-Doped and (B, N)-Codoped TiO ₂ Photocatalysts: A Combined Solid-State NMR and Theoretical Calculation Study. Journal of Physical Chemistry C, 2011, 115, 2709-2719.	3.1	164
20	Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3, 2932.	7.4	157
21	Brønsted/Lewis Acid Synergy in H–ZSM-5 and H–MOR Zeolites Studied by ¹ H and ²⁷ Al DQ-MAS Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 22320-22327.	3.1	147
22	Theoretical Predictions of ³¹ P NMR Chemical Shift Threshold of Trimethylphosphine Oxide Absorbed on Solid Acid Catalysts. Journal of Physical Chemistry B, 2008, 112, 4496-4505.	2.6	143
23	Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. Journal of the American Chemical Society, 2016, 138, 7603-7609.	13.7	137
24	New Insight into the Hydrocarbonâ€Pool Chemistry of the Methanolâ€toâ€Olefins Conversion over Zeolite Hâ€ZSMâ€5 from GCâ€MS, Solidâ€State NMR Spectroscopy, and DFT Calculations. Chemistry - A European Journal, 2014, 20, 12432-12443.	3.3	131
25	Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nature Communications, 2021, 12, 4652.	12.8	131
26	Location, Acid Strength, and Mobility of the Acidic Protons in Keggin 12-H3PW12O40:  A Combined Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculation Study. Journal of the American Chemical Society, 2005, 127, 18274-18280.	13.7	130
27	Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets. Journal of the American Chemical Society, 2021, 143, 6905-6914.	13.7	124
28	Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR. Physical Chemistry Chemical Physics, 2010, 12, 9395.	2.8	120
29	Covalent Encapsulation of Sulfur in a MOFâ€Derived S, Nâ€Doped Porous Carbon Host Realized via the Vaporâ€Infiltration Method Results in Enhanced Sodium–Sulfur Battery Performance. Advanced Energy Materials, 2020, 10, 2000931.	19.5	118
30	Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today, 2016, 270, 93-100.	4.4	113
31	Dual-Mode, Color-Tunable, Lanthanide-Doped Core–Shell Nanoarchitectures for Anti-Counterfeiting Inks and Latent Fingerprint Recognition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35294-35304.	8.0	113
32	Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property. Fuel Processing Technology, 2015, 129, 130-138.	7.2	112
33	Resolving the puzzle of single-atom silver dispersion on nanosized \hat{I}^3 -Al2O3 surface for high catalytic performance. Nature Communications, 2020, 11, 529.	12.8	111
34	Chelating Nâ€Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie - International Edition, 2018, 57, 4981-4985.	13.8	110
35	Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 12675-12679.	13.8	108
36	BrÃ, nsted/Lewis Acid Synergy in Methanol-to-Aromatics Conversion on Ga-Modified ZSM-5 Zeolites, As Studied by Solid-State NMR Spectroscopy. ACS Catalysis, 2018, 8, 69-74.	11.2	107

#	Article	IF	CITATIONS
37	Biomimetic photonic materials with tunable structural colors. Journal of Colloid and Interface Science, 2013, 406, 1-17.	9.4	106
38	Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Accounts of Chemical Research, 2019, 52, 2179-2189.	15.6	106
39	Probing the Spatial Proximities among Acid Sites in Dealuminated H-Y Zeolite by Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 14486-14494.	3.1	105
40	Acidic Strengths of BrÃ,nsted and Lewis Acid Sites in Solid Acids Scaled by ³¹ P NMR Chemical Shifts of Adsorbed Trimethylphosphine. Journal of Physical Chemistry C, 2011, 115, 7660-7667.	3.1	104
41	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	12.9	104
42	In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. Journal of Materials Chemistry A, 2014, 2, 17994-18004.	10.3	102
43	Sustainable and Facile Route to Nearly Monodisperse Spherical Aggregates of CeO ₂ Nanocrystals with Ionic Liquids and Their Catalytic Activities for CO Oxidation. Journal of Physical Chemistry C, 2008, 112, 18405-18411.	3.1	101
44	A Mechanistic Study of Methanol-to-Aromatics Reaction over Ga-Modified ZSM-5 Zeolites: Understanding the Dehydrogenation Process. ACS Catalysis, 2018, 8, 9809-9820.	11.2	100
45	Insight into Dimethyl Ether Carbonylation Reaction over Mordenite Zeolite from in-Situ Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 5840-5847.	3.1	98
46	High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry A, 2014, 2, 17828-17839.	10.3	96
47	Transfer Channel of Photoinduced Holes on a TiO ₂ Surface As Revealed by Solid-State Nuclear Magnetic Resonance and Electron Spin Resonance Spectroscopy. Journal of the American Chemical Society, 2017, 139, 10020-10028.	13.7	96
48	Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis, 2022, 5, 45-54.	34.4	95
49	Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. Journal of Materials Chemistry, 2007, 17, 4492.	6.7	94
50	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	4.1	93
51	Solid-State NMR Investigations of Carbon Dioxide Gas in Metal–Organic Frameworks: Insights into Molecular Motion and Adsorptive Behavior. Chemical Reviews, 2018, 118, 10033-10048.	47.7	93
52	MAS NMR Studies on the Dealumination of Zeolite MCM-22. Journal of Physical Chemistry B, 2001, 105, 1770-1779.	2.6	92
53	Ultrathin 2D Rareâ€Earth Nanomaterials: Compositions, Syntheses, and Applications. Advanced Materials, 2020, 32, e1806461.	21.0	92
54	Confined Heteropoly Blues in Defected Zrâ€MOF (Bottle Around Ship) for Highâ€Efficiency Oxidative Desulfurization. Small, 2020, 16, e1906432.	10.0	92

#	Article	IF	Citations
55	Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solidâ€State NMR. Advanced Materials, 2017, 29, 1605895.	21.0	91
56	Beyond the Thermal Equilibrium Limit of Ammonia Synthesis with Dual Temperature Zone Catalyst Powered by Solar Light. CheM, 2019, 5, 2702-2717.	11.7	91
57	Hydrogen Spillover to Oxygen Vacancy of TiO _{2–<i>x</i>} H _{<i>y</i>} /Fe: Breaking the Scaling Relationship of Ammonia Synthesis. Journal of the American Chemical Society, 2020, 142, 17403-17412.	13.7	91
58	Highly effective ammonia removal in a series of $Br\tilde{A}_{,n}$, nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	7.4	89
59	Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. Journal of Catalysis, 2015, 332, 127-137.	6.2	88
60	Self-Assembly of Cetyltrimethylammonium Bromide and Lamellar Zeolite Precursor for the Preparation of Hierarchical MWW Zeolite. Chemistry of Materials, 2016, 28, 4512-4521.	6.7	88
61	Extraâ€Framework Aluminumâ€Assisted Initial Câ^'C Bond Formation in Methanolâ€toâ€Olefins Conversion on Zeolite Hâ€ZSMâ€5. Angewandte Chemie - International Edition, 2018, 57, 10197-10201.	13.8	86
62	NMRâ€Spectroscopic Evidence of Intermediateâ€Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSMâ€5 Zeolite Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3850-3853.	13.8	84
63	Theoretical Investigation of the Effects of the Zeolite Framework on the Stability of Carbenium Ions. Journal of Physical Chemistry C, 2011, 115, 7429-7439.	3.1	83
64	Relationship Between 1H Chemical Shifts of Deuterated Pyridinium Ions and BrÃ,nsted Acid Strength of Solid Acids. Journal of Physical Chemistry B, 2007, 111, 3085-3089.	2.6	82
65	Low-Temperature Reactivity of Zn ⁺ Ions Confined in ZSM-5 Zeolite toward Carbon Monoxide Oxidation: Insight from in Situ DRIFT and ESR Spectroscopy. Journal of the American Chemical Society, 2013, 135, 6762-6765.	13.7	80
66	The acidic nature of "NMR-invisible―tri-coordinated framework aluminum species in zeolites. Chemical Science, 2019, 10, 10159-10169.	7.4	78
67	A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Transactions, 2011, 40, 2720-2724.	3.3	77
68	Insights of the Crystallization Process of Molecular Sieve AlPO ₄ -5 Prepared by Solvent-Free Synthesis. Journal of the American Chemical Society, 2016, 138, 6171-6176.	13.7	77
69	One-Dimensional Lead-Free Halide with Near-Unity Greenish-Yellow Light Emission. Chemistry of Materials, 2020, 32, 6525-6531.	6.7	73
70	Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis. Plant Cell, 2016, 28, 2991-3004.	6.6	71
71	Acidity of Mesoporous MoOx/ZrO2and WOx/ZrO2Materials:Â A Combined Solid-State NMR and Theoretical Calculation Study. Journal of Physical Chemistry B, 2006, 110, 10662-10671.	2.6	70
72	Reactivity of C ₁ Surface Species Formed in Methane Activation on Znâ€Modified Hâ€ZSMâ€5 Zeolite. Chemistry - A European Journal, 2010, 16, 14016-14025.	3.3	68

#	Article	IF	Citations
73	Targeted synthesis of an electroactive organic framework. Journal of Materials Chemistry, 2011, 21, 18208.	6.7	68
74	¹³ C Chemical Shift of Adsorbed Acetone for Measuring the Acid Strength of Solid Acids: A Theoretical Calculation Study. Journal of Physical Chemistry C, 2010, 114, 12711-12718.	3.1	67
7 5	Direct Detection of Supramolecular Reaction Centers in the Methanolâ€toâ€Olefins Conversion over Zeolite Hâ€ZSMâ€5 by ¹³ Câ€" ²⁷ Al Solidâ€State NMR Spectroscopy. Angewandte Che International Edition, 2016, 55, 2507-2511.	miæ.8	67
76	1H/27Al TRAPDOR NMR studies on aluminum species in dealuminated zeolites. Solid State Nuclear Magnetic Resonance, 1998, 10, 151-160.	2.3	66
77	Construction of Porous Aromatic Frameworks with Exceptional Porosity via Building Unit Engineering. Advanced Materials, 2018, 30, e1804169.	21.0	66
78	A Hydrothermally Stable Irreducible Oxideâ€Modified Pd/MgAl ₂ O ₄ Catalyst for Methane Combustion. Angewandte Chemie - International Edition, 2020, 59, 18522-18526.	13.8	64
79	Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 2013, 55-56, 12-27.	2.3	62
80	Experimental Evidence on the Formation of Ethene through Carbocations in Methanol Conversion over Hâ€ZSMâ€5 Zeolite. Chemistry - A European Journal, 2015, 21, 12061-12068.	3.3	62
81	Distance measurement between a spin-1/2 and a half-integer quadrupolar nuclei by solid-state NMR using exact analytical expressions. Journal of Magnetic Resonance, 2010, 206, 269-273.	2.1	61
82	Measurement of Aluminum–Carbon Distances Using Sâ€RESPDOR NMR Experiments. ChemPhysChem, 2012, 13, 3605-3615.	2.1	59
83	Identification of Nonequivalent Framework Oxygen Species in Metal–Organic Frameworks by ¹⁷ O Solid-State NMR. Journal of Physical Chemistry C, 2013, 117, 16953-16960.	3.1	59
84	Synergic Effect of Active Sites in Zincâ€Modified ZSMâ€5 Zeolites as Revealed by Highâ€Field Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 15826-15830.	13.8	59
85	Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 2018, 8, 10950-10963.	11.2	59
86	Dynamic Nuclear Polarization Surface Enhanced NMR spectroscopy (DNP SENS): Principles, protocols, and practice. Current Opinion in Colloid and Interface Science, 2018, 33, 63-71.	7.4	58
87	Methanol to hydrocarbons reaction over $H\hat{l}^2$ zeolites studied by high resolution solid-state NMR spectroscopy: Carbenium ions formation and reaction mechanism. Journal of Catalysis, 2016, 335, 47-57.	6.2	57
88	Rare earth double perovskites: a fertile soil in the field of perovskite oxides. Inorganic Chemistry Frontiers, 2019, 6, 2226-2238.	6.0	57
89	Bifunctionalized Metal–Organic Frameworks for Pore‧izeâ€Dependent Enantioselective Sensing. Angewandte Chemie - International Edition, 2022, 61, .	13.8	57
90	Generating Shortâ€Chain Sulfur Suitable for Efficient Sodium–Sulfur Batteries via Atomic Copper Sites on a N,Oâ€Codoped Carbon Composite. Advanced Energy Materials, 2021, 11, 2100989.	19.5	55

#	Article	IF	Citations
91	Crystallization of AlPO4-5 Aluminophosphate Molecular Sieve Prepared in Fluoride Medium:Â A Multinuclear Solid-State NMR Study. Journal of Physical Chemistry B, 2007, 111, 7105-7113.	2.6	54
92	Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Communications Chemistry, 2018, 1 , .	4.5	54
93	Solid-state 31P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nature Protocols, 2020, 15, 3527-3555.	12.0	54
94	Unravelling the Efficient Photocatalytic Activity of Boron-induced Ti3+ Species in the Surface Layer of TiO2. Scientific Reports, 2016, 6, 34765.	3.3	53
95	F-assisted synthesis of a hierarchical ZSM-5 zeolite for methanol to propylene reaction: a b-oriented thinner dimensional morphology. RSC Advances, 2015, 5, 61354-61363.	3.6	52
96	Electrolytes for Batteries with Earthâ€Abundant Metal Anodes. Chemistry - A European Journal, 2018, 24, 18220-18234.	3.3	50
97	Recent Advances of Solidâ€State NMR Spectroscopy for Microporous Materials. Advanced Materials, 2020, 32, e2002879.	21.0	50
98	Molecular engineering of microporous crystals: (III) The influence of water content on the crystallization of microporous aluminophosphate AlPO4-11. Microporous and Mesoporous Materials, 2012, 147, 212-221.	4.4	47
99	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie - International Edition, 2019, 58, 12138-12142.	13.8	47
100	Higher Magnetic Fields, Finer MOF Structural Information: ¹⁷ O Solid-State NMR at 35.2 T. Journal of the American Chemical Society, 2020, 142, 14877-14889.	13.7	47
101	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19618-19627.	2.0	47
102	Origin of Ferroelectricity in Two Prototypical Hybrid Organic–Inorganic Perovskites. Journal of the American Chemical Society, 2022, 144, 816-823.	13.7	47
103	Mapping Out Chemically Similar, Crystallographically Nonequivalent Hydrogen Sites in Metal–Organic Frameworks by ⟨sup⟩1⟨/sup⟩H Solid-State NMR Spectroscopy. Chemistry of Materials, 2015, 27, 3306-3316.	6.7	46
104	Alkylation of Benzene with Methane over ZnZSM-5 Zeolites Studied with Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 4018-4023.	3.1	45
105	Resolving Multiple Nonâ€equivalent Metal Sites in Magnesiumâ€Containing Metal–Organic Frameworks by Natural Abundance ²⁵ Mg Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 4432-4436.	3.3	45
106	²⁵ Mg Solid-State NMR: A Sensitive Probe of Adsorbing Guest Molecules on a Metal Center in Metal–Organic Framework CPO-27-Mg. Journal of Physical Chemistry Letters, 2013, 4, 7-11.	4.6	44
107	Pore Selectivity for Olefin Protonation Reactions Confined inside Mordenite Zeolite: A Theoretical Calculation Study. Journal of Physical Chemistry C, 2013, 117, 2194-2202.	3.1	43
108	Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route. Scientific Reports, 2015, 5, 11521.	3.3	43

#	Article	IF	CITATIONS
109	Observation of Nonframework Al Species in Zeolite \hat{l}^2 by Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 5252-5256.	2.6	42
110	Dry Gel Conversion Method for the Synthesis of Organic–Inorganic Hybrid MOR Zeolites with Modifiable Catalytic Activities. Chemistry of Materials, 2012, 24, 4160-4165.	6.7	42
111	Mapping the oxygen structure of \hat{I}^3 -Al2O3 by high-field solid-state NMR spectroscopy. Nature Communications, 2020, 11, 3620.	12.8	42
112	New Insights into the Effects of Acid Strength on the Solid Acid-Catalyzed Reaction: Theoretical Calculation Study of Olefinic Hydrocarbon Protonation Reaction. Journal of Physical Chemistry C, 2010, 114, 10254-10264.	3.1	41
113	ZSM-5 extrudates modified with phosphorus as a super effective MTP catalyst: Impact of the acidity on binder. Fuel Processing Technology, 2017, 168, 105-115.	7.2	41
114	Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nature Communications, 2019, 10, 1961.	12.8	40
115	Rational design of ionic V-MOF with confined Mo species for highly efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 298, 120594.	20.2	40
116	Chelating Nâ€Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO ₂ Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry. Angewandte Chemie, 2018, 130, 5075-5079.	2.0	39
117	Identification of Singlet Self-Trapped Excitons in a New Family of White-Light-Emitting Zero-Dimensional Compounds. Journal of Physical Chemistry C, 2020, 124, 11625-11630.	3.1	39
118	Dual Active Sites on Molybdenum/ZSMâ€5 Catalyst for Methane Dehydroaromatization: Insights from Solidâ€5tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 10709-10715.	13.8	39
119	Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: A seeded approach for inhibiting ZSM-48. Journal of Colloid and Interface Science, 2011, 358, 252-260.	9.4	38
120	The effect of high external pressure on the structure and stability of MOF $\hat{l}\pm -Mg$ (sub>3 (HCOO) ₆ probed by in situ Raman and FT-IR spectroscopy. Journal of Materials Chemistry A, 2015, 3, 11976-11984.	10.3	38
121	Synthesis and structure of a family of rhodium polystannide clusters [Rh@Sn ₁₀] ^{3–} , [Rh@Sn ₁₂] ^{3–} , [Rh ₂ @Sn ₁₇] ^{6–} and the first triply-fused stannide, [Rh ₃ @Sn ₂₄ 1 ^{5–} , Chemical Science, 2019, 10, 4394-4401.	7.4	38
122	Defect and interface engineering for electrochemical nitrogen reduction reaction under ambient conditions. Journal of Energy Chemistry, 2022, 65, 448-468.	12.9	38
123	Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chemical Society Reviews, 2021, 50, 8382-8399.	38.1	37
124	Monitoring and Understanding the Paraelectric–Ferroelectric Phase Transition in the Metal–Organic Framework [NH ₄][M(HCOO) ₃] by Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2015, 21, 14348-14361.	3.3	36
125	Enhancement of Br $ ilde{A}_i$ nsted acidity in zeolitic catalysts due to an intermolecular solvent effect in confined micropores. Chemical Communications, 2012, 48, 6936.	4.1	35
126	Ï€â€Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation in Methanolâ€toâ€Hydrocarbon Conversion. Angewandte Chemie - International Edition, 2020, 59, 7198-7202.	13.8	35

#	Article	IF	Citations
127	Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged HZSM-5 zeolite. Microporous and Mesoporous Materials, 2007, 98, 214-219.	4.4	34
128	Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei. Chemical Communications, 2013, 49, 6653.	4.1	34
129	Recent Advances of Solid-State NMR Studies on Zeolites. Annual Reports on NMR Spectroscopy, 2013, 78, 1-54.	1.5	34
130	Multinuclear Solid-State NMR Studies on the Formation Mechanism of Aluminophosphate Molecular Sieves in Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 5848-5854.	3.1	34
131	Tuning Gold Nanoparticles with Chelating Ligands for Highly Efficient Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 12857-12861.	2.0	34
132	Revealing Molecular Mechanisms in Hierarchical Nanoporous Carbon via Nuclear Magnetic Resonance. Matter, 2020, 3, 2093-2107.	10.0	34
133	Progress in development and application of solid-state NMR for solid acid catalysis. Chinese Journal of Catalysis, 2013, 34, 436-491.	14.0	33
134	Boosting the turnover number of core–shell Al-ZSM-5@B-ZSM-5 zeolite for methanol to propylene reaction by modulating its gradient acid site distribution and low consumption diffusion. Catalysis Science and Technology, 2019, 9, 659-671.	4.1	33
135	Mechanism of Methanolâ€toâ€hydrocarbon Reaction over Zeolites: A solidâ€state NMR Perspective. ChemCatChem, 2020, 12, 965-980.	3.7	33
136	Solid state 13C NMR studies of methane dehydroaromatization reaction on Mo/HZSM-5 and W/HZSM-5 catalysts. Chemical Communications, 2002, , 3046-3047.	4.1	32
137	Solid state NMR study of acid sites formed by adsorption of SO3 onto \hat{l}^3 -Al2O3. Chemical Communications, 2003, , 884-885.	4.1	32
138	Strong or weak acid, which is more efficient for Beckmann rearrangement reaction over solid acid catalysts?. Catalysis Science and Technology, 2015, 5, 3675-3681.	4.1	32
139	Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications, 2021, 12, 4661.	12.8	32
140	Formation, Location, and Photocatalytic Reactivity of Methoxy Species on Keggin 12-H ₃ PW ₁₂ O ₄₀ : A Joint Solid-State NMR Spectroscopy and DFT Calculation Study. Journal of Physical Chemistry C, 2008, 112, 15765-15770.	3.1	31
141	Host–Guest Interactions in Dealuminated HY Zeolite Probed by ¹³ C– ²⁷ Al Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 3068-3072.	4.6	31
142	A Microporous Amic Acid Polymer for Enhanced Ammonia Capture. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33504-33510.	8.0	31
143	Functionalized SBA-15 materials for bilirubin adsorption. Applied Surface Science, 2011, 257, 6004-6009.	6.1	30
144	Influences of the confinement effect and acid strength of zeolite on the mechanisms of Methanol-to-Olefins conversion over H-ZSM-5: A theoretical study of alkenes-based cycle. Microporous and Mesoporous Materials, 2016, 231, 216-229.	4.4	30

#	Article	IF	Citations
145	Iron detection and remediation with a functionalized porous polymer applied to environmental water samples. Chemical Science, 2019, 10, 6651-6660.	7.4	30
146	Brönsted and Lewis Acidity of the BF3/ \hat{l}^3 -Al2O3Alkylation Catalyst as Revealed by Solid-State NMR Spectroscopy and DFT Quantum Chemical Calculations. Journal of Physical Chemistry B, 2005, 109, 13124-13131.	2.6	29
147	Bilirubin adsorption on amine/methyl bifunctionalized SBA-15 with platelet morphology. Colloids and Surfaces B: Biointerfaces, 2011, 84, 571-578.	5.0	29
148	Population transfer HMQC for half-integer quadrupolar nuclei. Journal of Chemical Physics, 2015, 142, 094201.	3.0	29
149	Insight into the formation of the tert-butyl cation confined inside H-ZSM-5 zeolite from NMR spectroscopy and DFT calculations. Chemical Communications, 2016, 52, 10606-10608.	4.1	29
150	Probing the surface of \hat{I}^3 -Al ₂ O ₃ by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 17218-17225.	2.8	29
151	Establishing a Link Between the Dual Cycles in Methanol-to-Olefins Conversion on H-ZSM-5: Aromatization of Cycloalkenes. ACS Catalysis, 2020, 10, 4299-4305.	11.2	29
152	Interactions between Nafion resin and protonated dodecylamine modified montmorillonite: A solid state NMR study. Journal of Colloid and Interface Science, 2007, 311, 38-44.	9.4	28
153	Direct observation of methylcyclopentenyl cations (MCP ⁺) and olefin generation in methanol conversion over TON zeolite. Catalysis Science and Technology, 2016, 6, 89-97.	4.1	28
154	Origin of High Selectivity of Dimethyl Ether Carbonylation in the 8-Membered Ring Channel of Mordenite Zeolite. Journal of Physical Chemistry C, 2019, 123, 15503-15512.	3.1	28
155	Modified Nano-TiO2 Based Composites for Environmental Photocatalytic Applications. Catalysts, 2020, 10, 759.	3.5	27
156	Molecular engineering of microporous crystals: (IV) Crystallization process of microporous aluminophosphate AlPO4-11. Microporous and Mesoporous Materials, 2012, 152, 190-207.	4.4	26
157	External or internal surface of H-ZSM-5 zeolite, which is more effective for the Beckmann rearrangement reaction?. Catalysis Science and Technology, 2017, 7, 2512-2523.	4.1	26
158	Energy Level Engineering: Ru Single Atom Anchored on Mo-MOF with a [Mo ₈ O ₂₆ (im) ₂] ^{4–} Structure Acts as a Biomimetic Photocatalyst. ACS Catalysis, 2022, 12, 7960-7974.	11.2	26
159	New Insights into the Short-Range Structures of Microporous Titanosilicates As Revealed by ^{47/49} Ti, ²³ Na, ³⁹ K, and ²⁹ Si Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 27353-27365.	3.1	25
160	Capturing Guest Dynamics in Metal–Organic Framework CPO-27-M (M = Mg, Zn) by ² H Solid-State NMR Spectroscopy. Langmuir, 2016, 32, 5468-5479.	3.5	25
161	Solid-state NMR Studies of Host–Guest Interaction between UiO-67 and Light Alkane at Room Temperature. Journal of Physical Chemistry C, 2017, 121, 14261-14268.	3.1	25
162	Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. Journal of Catalysis, 2017, 354, 138-151.	6.2	25

#	Article	lF	Citations
163	Brønsted/Lewis Acid Sites Synergy in H-MCM-22 Zeolite Studied by 1H and 27Al DQ-MAS NMR Spectroscopy. Chinese Journal of Catalysis, 2012, 33, 129-139.	14.0	24
164	Host–Guest Interactions and Their Catalytic Consequences in Methanol to Olefins Conversion on Zeolites Studied by ⟨sup⟩13⟨ sup⟩C–⟨sup⟩27⟨ sup⟩Al Double-Resonance Solid-State NMR Spectroscopy. ACS Catalysis, 2017, 7, 6094-6103.	11.2	24
165	TiO2/SBA-15 photocatalysts synthesized through the surface acidolysis of Ti(OnBu)4 on carboxyl-modified SBA-15. Catalysis Today, 2010, 158, 329-335.	4.4	23
166	Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. New Journal of Chemistry, 2014, 38, 2292.	2.8	23
167	Extraâ€Framework Aluminumâ€Assisted Initial Câ°'C Bond Formation in Methanolâ€toâ€Olefins Conversion on Zeolite Hâ€ZSMâ€5. Angewandte Chemie, 2018, 130, 10354-10358.	2.0	23
168	All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Research, 2019, 12, 593-599.	10.4	22
169	Unravelling the strong metal-support interaction between Ru quantum dots and g-C3N4 for visible-light photocatalytic nitrogen fixation. Applied Catalysis A: General, 2021, 617, 118112.	4.3	22
170	Enhanced Photocatalytic Performance of Carbon-Coated TiO _{2â€"<i>x</i>} with Surface-Active Carbon Species. Journal of Physical Chemistry C, 2018, 122, 10948-10955.	3.1	21
171	Molecular engineering of microporous crystals: (VI) Structure-directing effect in the crystallization process of layered aluminophosphates. Microporous and Mesoporous Materials, 2012, 164, 56-66.	4.4	20
172	Carbonylation of ethane with carbon monoxide over Zn-modified ZSM-5 zeolites studied by in situ solid-state NMR spectroscopy. Journal of Catalysis, 2017, 345, 228-235.	6.2	20
173	1H MAS and 1H[23Na] double resonance NMR studies on the modification of surface hydroxyl groups of \hat{l}^3 -alumina by sodium. Solid State Nuclear Magnetic Resonance, 1997, 7, 281-290.	2.3	19
174	Acid sites and oxidation center in molybdena supported on tin oxide as studied by solid-state NMR spectroscopy and theoretical calculation. Physical Chemistry Chemical Physics, 2006, 8, 2378.	2.8	19
175	An elaborate structure investigation of the chiral polymorph A-enriched zeolite beta. CrystEngComm, 2016, 18, 1782-1789.	2.6	19
176	Facile Synthesis of Macrocellular Mesoporous Foamlike Ce–Sn Mixed Oxides with a Nanocrystalline Framework by Using Triblock Copolymer as the Single Template. Small, 2009, 5, 2730-2737.	10.0	18
177	Natural abundance solid-state 67Zn NMR characterization of microporous zinc phosphites and zinc phosphates at ultrahigh magnetic field. Physical Chemistry Chemical Physics, 2011, 13, 16606.	2.8	18
178	Molecular engineering of microporous crystals: (V) Investigation of the structure-directing ability of piperazine in forming two layered aluminophosphates. Microporous and Mesoporous Materials, 2012, 155, 153-166.	4.4	18
179	Molecular engineering of microporous crystals: (VII) The molar ratio dependence of the structure-directing ability of piperazine in the crystallization of four aluminophosphates with open-frameworks. Microporous and Mesoporous Materials, 2013, 176, 112-122.	4.4	18
180	Unstable-Fe-site-induced formation of mesopores in microporous zeolite Y without using organic templates. Chemical Communications, 2014, 50, 2660-2663.	4.1	18

#	Article	IF	CITATIONS
181	The dependence of the structure-directing effect of piperazine and the crystallization pathways of open-framework aluminophosphates on the local environment of the initial mixture. Microporous and Mesoporous Materials, 2014, 183, 108-116.	4.4	18
182	Amine Dynamics in Diamine-Appended Mg ₂ (dobpdc) Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7044-7049.	4.6	18
183	Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14, 159-187.	4.4	18
184	Significant promotion effect of the rutile phase on V ₂ O ₅ /TiO ₂ catalysts for NH ₃ -SCR. Chemical Communications, 2021, 57, 355-358.	4.1	18
185	Crystallization of magnesium substituted aluminophosphate of type-36 as studied by solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 2008, 115, 576-584.	4.4	17
186	Characterization and Catalytic Performance in n-Hexane Cracking of HEU-1 Zeolites Dealuminated Using Hydrochloric Acid and Hydrothermal Treatments. Chinese Journal of Catalysis, 2012, 33, 1889-1900.	14.0	17
187	Surface Water Loading on Titanium Dioxide Modulates Photocatalytic Water Splitting. Cell Reports Physical Science, 2020, 1, 100013.	5.6	17
188	Alkylation of benzene with carbon monoxide over Zn/H-ZSM-5 zeolite studied using in situ solid-state NMR spectroscopy. Chemical Communications, 2014, 50, 11382-11384.	4.1	16
189	Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization. Physical Chemistry Chemical Physics, 2017, 19, 9349-9353.	2.8	16
190	Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg2(dobpdc) Using 25Mg NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 19938-19945.	3.1	16
191	The Low‶emperature Oxidation of Propane by using H ₂ O ₂ and Fe/ZSMâ€5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies. ChemCatChem, 2017, 9, 642-650.	3.7	16
192	Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite. Catalysis Today, 2020, 339, 86-92.	4.4	16
193	Effect of treatment atmosphere on the vanadium species of V/TiO ₂ catalysts for the selective catalytic reduction of NO _x with NH ₃ . Catalysis Science and Technology, 2020, 10, 311-314.	4.1	16
194	DNP-SENS Formulation Protocols To Study Surface Sites in Ziegler–Natta Catalyst MgCl ₂ Supports Modified with Internal Donors. Journal of Physical Chemistry C, 2021, 125, 15994-16003.	3.1	16
195	Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120312.	3.4	15
196	Investigating adsorption of organic compounds in metal-organic framework MIL-53. Canadian Journal of Chemistry, 2015, 93, 960-969.	1.1	15
197	Adsorptive Separation of Furfural/5-Hydroxymethylfurfural in MAF-5 with Ellipsoidal Pores. Industrial & Description of Furfural (1998) Industrial & Descri	3.7	15
198	Rare earth oxynitrides: promising visible-light-driven photocatalysts for water splitting. Materials Advances, 2021, 2, 1190-1203.	5 . 4	15

#	Article	IF	CITATIONS
199	Influence of Trimethylphosphine Oxide Loading on the Measurement of Zeolite Acidity by Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 9497-9506.	3.1	15
200	Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSMâ€5 Zeolite by Solidâ€State Nuclear Magnetic Resonance Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 23630-23634.	13.8	15
201	One-step DGC assembly and structural characterization of a hairy particle zeolite-like organic–inorganic hybrid as an efficient modifiable catalytic material. Dalton Transactions, 2015, 44, 14732-14740.	3.3	14
202	Direct Detection of Supramolecular Reaction Centers in the Methanolâ€toâ€Olefins Conversion over Zeolite Hâ€ZSMâ€5 by ¹³ C– ²⁷ Al Solidâ€State NMR Spectroscopy. Angewandte Che 2016, 128, 2553-2557.	ന്മിക്	14
203	A Hydrothermally Stable Irreducible Oxideâ€Modified Pd/MgAl ₂ O ₄ Catalyst for Methane Combustion. Angewandte Chemie, 2020, 132, 18680-18684.	2.0	14
204	Ultrafast Crystallization of AlPO ₄ -5 Molecular Sieve in a Deep Eutectic Solvent. Journal of Physical Chemistry C, 2021, 125, 8876-8889.	3.1	14
205	Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. Solid State Nuclear Magnetic Resonance, 2022, 117, 101772.	2.3	14
206	Molecular engineering of microporous crystals: (VIII) The solvent-dependence of the structure-directing effect of ethylenediamine in the synthesis of open-framework aluminophosphates. Microporous and Mesoporous Materials, 2015, 208, 105-112.	4.4	13
207	Identification of double four-ring units in germanosilicate ITQ-13 zeolite by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 87, 1-9.	2.3	13
208	Synthesis of EUâ€1/ZSMâ€48 Coâ€Crystalline Zeolites from Highâ€Silica EUâ€1 Seeds: Tailoring Phase Proportion and Promoting Long Crystallineâ€Phase Stability. Chemistry - A European Journal, 2018, 24, 6595-6605.	1 s 3 . 3	13
209	Tuning Pd–Au Bimetallic Catalysts for Heterogeneous Parahydrogen-Induced Polarization. Journal of Physical Chemistry C, 2018, 122, 1248-1257.	3.1	13
210	Host-guest interaction of styrene and ethylbenzene in MIL-53 studied by solid-state NMR. Solid State Nuclear Magnetic Resonance, 2018, 90, 1-6.	2.3	13
211	Stellerite-seeded facile synthesis of zeolite heulandite with exceptional aqueous Cd ²⁺ capture performance. Inorganic Chemistry Frontiers, 2019, 6, 1785-1792.	6.0	13
212	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 19532-19538.	13.8	13
213	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie - International Edition, 2021, 60, 15556-15562.	13.8	13
214	Dynamic Self-Dispersion of Aggregated Boron Clusters into Stable Oligomeric Boron Species on MFI Zeolite Nanosheets under Oxidative Dehydrogenation of Propane. ACS Catalysis, 2022, 12, 7368-7376.	11.2	13
215	Selective oxidation of methanol over supported vanadium oxide catalysts as studied by solid-state NMR spectroscopy. Journal of Molecular Catalysis A, 2007, 270, 257-263.	4.8	12
216	Synergic Effect of Active Sites in Zincâ€Modified ZSMâ€5 Zeolites as Revealed by Highâ€Field Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2016, 128, 16058-16062.	2.0	12

#	Article	IF	CITATIONS
217	Origin of Zeolite Confinement Revisited by Energy Decomposition Analysis. Journal of Physical Chemistry C, 2016, 120, 27349-27363.	3.1	12
218	Host–Guest Interaction between Methanol and Metal–Organic Framework Cu _{3–<i>x</i>xxxxxxx<}	3.1	12
219	Quantitative Analysis of Linker Composition and Spatial Arrangement of Multivariate Metal–Organic Framework UiO-66 through ⟨sup⟩1⟨/sup⟩H Fast MAS NMR. Journal of Physical Chemistry C, 2020, 124, 17640-17647.	3.1	12
220	Primary Adsorption Sites of Light Alkanes in Multivariate UiO-66 at Room Temperature as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2020, 124, 3738-3746.	3.1	12
221	Facile activation of lithium slag for the hydrothermal synthesis of zeolite A with commercial quality and high removal efficiency for the isotope of radioactive ⁹⁰ Sr. Inorganic Chemistry Frontiers, 2022, 9, 468-477.	6.0	12
222	Variation of sodium coordination during the hydration processes of layered sodium disilicates as studied by 23Na MQMAS and 1Hâ†"23Na CP/MAS NMR spectroscopyElectronic supplementary information (ESI) available: XRD patterns of SKS-5 and SKS-6 samples after different hydration times, and 1Hâ€"1H NOESY spectra of SKS-5 and SKS-6 hydrated for six months. See http://www.rsc.org/suppdata/jm/b2/b209578e/. Journal of Materials Chemistry, 2003, 13, 614-621.	6.7	11
223	Multinuclear solid-state NMR studies on phase transition of mesostructured aluminophosphate. Microporous and Mesoporous Materials, 2010, 127, 73-81.	4.4	11
224	Influence of Al3+ on polymorph A enrichment in the crystallization of beta zeolite. Chinese Journal of Catalysis, 2015, 36, 889-896.	14.0	11
225	Heteronuclear correlation experiments of 23Na-27Al in rotating solids. Solid State Nuclear Magnetic Resonance, 2017, 84, 103-110.	2.3	11
226	Uniform signal enhancement in MAS NMR of half-integer quadrupolar nuclei using quadruple-frequency sweeps. Journal of Magnetic Resonance, 2018, 293, 92-103.	2.1	11
227	Highly efficient conversion of glucose to methyl lactate over hierarchical bimetalâ€doped <scp>Beta</scp> zeolite catalysts. Journal of Chemical Technology and Biotechnology, 2021, 96, 2238-2248.	3 . 2	11
228	Interfacial-Bonding Ti–N–C Boosts Efficient Photocatalytic H ₂ Evolution in Close Coupling g-C ₃ N ₄ /TiO ₂ . Journal of Physical Chemistry C, 2021, 125, 12012-12018.	3.1	11
229	Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4 containing four different types of monophosphates. Solid State Sciences, 2009, 11, 622-627.	3.2	10
230	Facile synthesis of acid mesoporous fluoropolymer as water-tolerant catalyst for esterification. Microporous and Mesoporous Materials, 2015, 211, 30-37.	4.4	10
231	New insights into the di- $\langle i \rangle n \langle i \rangle$ -propylamine (DPA) molecule as an organic structural directing agent (OSDA) in the crystallization of AlPO $\langle sub \rangle 4 \langle sub \rangle -11$ molecular sieve. Inorganic Chemistry Frontiers, 2018, 5, 1633-1639.	6.0	10
232	Adsorption of Na+ onto \hat{I}^3 -alumina studied by solid-state 23Na and 27Al nuclear magnetic resonance spectroscopy. Solid State Nuclear Magnetic Resonance, 1993, 2, 317-324.	2.3	9
233	A Novel Phase Transformation Phenomenon in Mesostructured Aluminophosphate. Journal of Physical Chemistry C, 2010, 114, 7076-7084.	3.1	9
234	The temperature-dependence of the structure-directing effect of 2-methylpiperazine in the synthesis of open-framework aluminophosphates. RSC Advances, 2014, 4, 39011-39019.	3.6	9

#	Article	IF	Citations
235	Preparation of organic–inorganic hybrid zeolites with highly-conserved framework carbon by an improved DGC route. Microporous and Mesoporous Materials, 2016, 220, 225-230.	4.4	9
236	Effect of Ionothermal Synthesis on the Acidity and Catalytic Performance of a SAPOâ€5 Molecular Sieve. ChemistrySelect, 2019, 4, 10520-10524.	1.5	9
237	17 O solidâ€state NMR at ultrahigh magnetic field of 35.2ÂT: Resolution of inequivalent oxygen sites in different phases of MOF MILâ€53(Al). Magnetic Resonance in Chemistry, 2021, 59, 940-950.	1.9	9
238	Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO ₄ · <i>x</i> H ₂ O. ACS Catalysis, 2021, 11, 6162-6174.	11.2	9
239	Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MILâ€53. Chemistry - A European Journal, 2021, 27, 14711-14720.	3.3	9
240	Insight into Carbocationâ€Induced Noncovalent Interactions in the Methanolâ€toâ€Olefins Reaction over ZSMâ€5 Zeolite by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 26847-26854.	13.8	9
241	Insight into the activation of light alkanes over surface-modified carbon nanotubes from theoretical calculations. Carbon, 2014, 77, 122-129.	10.3	8
242	Ionothermal Synthesis of Triclinic SAPO-34 Zeolites. Catalysts, 2021, 11, 616.	3.5	8
243	Catalytic Conversion of Methanol to Propylene over (NH ₄) ₂ SiF ₆ -Modified Nanosized HZSM-5 Zeolite. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2705-2712.	4.9	8
244	Mechanistic Insight into Ethanol Dehydration over SAPO-34 Zeolite by Solid-state NMR Spectroscopy. Chemical Research in Chinese Universities, 2022, 38, 155-160.	2.6	8
245	Synthesis and structure analysis of zeolite AS-1 from HF–Al2O3–SiO2–ethylenediamine–H2O. Microporous and Mesoporous Materials, 2008, 116, 491-497.	4.4	7
246	Effect of Surface Acid Properties of Modified VOx/Al2O3 Catalysts on Methanol Selective Oxidation. Catalysis Letters, 2013, 143, 624-629.	2.6	7
247	Solidâ€state NMR studies of the acidity of functionalized metal–organic framework UiOâ€66 materials. Magnetic Resonance in Chemistry, 2020, 58, 1091-1098.	1.9	7
248	Ï€â€Interactions between Cyclic Carbocations and Aromatics Cause Zeolite Deactivation in Methanolâ€toâ€Hydrocarbon Conversion. Angewandte Chemie, 2020, 132, 7265-7269.	2.0	7
249	Multiple Methane Activation Pathways on Gaâ€modified ZSMâ€5 Zeolites Revealed by Solidâ€State NMR Spectroscopy. ChemCatChem, 2020, 12, 3880-3889.	3.7	7
250	Hostâ€Guest Interaction in Ethylene and Ethane Separation on Zeolitic Imidazolate Frameworks as Revealed by Solidâ€State NMR Spectroscopy. Chemistry - A European Journal, 2021, 27, 11303-11308.	3.3	7
251	Evaluation of neutron beam characteristics for D-BNCT01 facility. Nuclear Science and Techniques/Hewuli, 2022, 33, 1.	3.4	7
252	Aluminum-Doped TiO ₂ with Dominant {001} Facets: Microstructure and Property Evolution and Photocatalytic Activity. Journal of Physical Chemistry C, 2022, 126, 5555-5563.	3.1	7

#	Article	IF	CITATIONS
253	Hollow mesoporous aluminosilicate spheres with acidic shell. Materials Chemistry and Physics, 2011, 125, 286-292.	4.0	6
254	¹³ C chemical shift tensors in MOF <i>α</i> â€Mg ₃ (HCOO) ₆ : Which component is more sensitive to hostâ€guest interaction?. Magnetic Resonance in Chemistry, 2020, 58, 1082-1090.	1.9	6
255	Direct synthesis of c-axis-oriented HZSM-5 zeolites in polyacrylamide hydrogel. Journal of Sol-Gel Science and Technology, 2020, 96, 256-263.	2.4	6
256	"X Factor―in the Structure and Anion Exchange of Layered Yttrium Hydroxides. Journal of Physical Chemistry C, 2021, 125, 7251-7258.	3.1	6
257	Pairwise Stereoselective Hydrogenation of Propyne on Supported Pd–Ag Catalysts Investigated by Parahydrogen-Induced Polarization. Journal of Physical Chemistry C, 2021, 125, 17144-17154.	3.1	6
258	Identifying Crystallographically Different Siâ^'OHâ^'Al Br \tilde{A}_{j} nsted Acid Sites in LTA Zeolites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
259	Synthesis and properties of a zeolite LEV analogue from the system—Na2O–Al2O3–SiO2–N,N-dimethylpiperidine chloride–H2O. Catalysis Today, 2009, 148, 6-11.	4.4	5
260	Intactness and spatial proximity of acid–base groups in bifunctional SBA-15 as revealed by solid-state NMR. Chemical Physics Letters, 2010, 491, 72-74.	2.6	5
261	Room temperature stable zinc carbonyl complex formed in zeolite ZSM-5 and its hydrogenation reactivity: a solid-state NMR study. Chemical Communications, 2015, 51, 9177-9180.	4.1	5
262	The structure-directing effect of organic amines in the multi-template/one-structure phenomenon of microporous crystal synthesis. Microporous and Mesoporous Materials, 2017, 240, 178-188.	4.4	5
263	Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy. Chemical Communications, 2020, 56, 12029-12032.	4.1	5
264	Frontispiece: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	5
265	Synthesis of Aluminophosphate Molecular Sieves in Alkaline Media. Chemistry - A European Journal, 2020, 26, 11408-11411.	3.3	5
266	Temperature-dependence of the influence of the position-2-methyl group on the structure-directing effect of piperazine in the synthesis of open-framework aluminophosphates. Scientific Reports, 2016, 6, 22019.	3.3	4
267	Structure-directing effect on synthesis of layered aluminophosphates with same topology. Chemical Research in Chinese Universities, 2017, 33, 513-519.	2.6	4
268	Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 270-282.	4.9	4
269	Unravelling the Mystery of Solid Solutions: A Case Study of ⁸⁹ Y Solidâ€State NMR Spectroscopy. ChemPhysChem, 2020, 21, 825-836.	2.1	4
270	Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 6535-6543.	2.8	4

#	Article	lF	CITATIONS
271	Detector control system for Daya Bay Reactor Neutrino Experiment. Science China Technological Sciences, 2013, 56, 1966-1973.	4.0	3
272	A single precursor approach for ZIF synthesis: transformation of a new 1D [Zn(lm)(Hlm)2(OAc)] structure to 3D Zn(lm)2 frameworks. CrystEngComm, 2015, 17, 3998-4005.	2.6	3
273	Valence state alternation of copper species doped in HY zeolite as revealed by paramagnetic relaxation enhancement NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2016, 74-75, 10-15.	2.3	3
274	Influence of fluoride ions on the structure-directing effect of organic amine in the synthesis of aluminophosphate open-frameworks. Chemical Research in Chinese Universities, 2017, 33, 853-859.	2.6	3
275	Encapsulation of bulky solvent molecules into the channels of aluminophosphate molecular sieve and its negative influence on the thermal stability of open-framework. Inorganic Chemistry Communication, 2018, 91, 67-71.	3.9	3
276	Sustainable Synthesis of Pure Silica Zeolites from a Combined Strategy of Zeolite Seeding and Alcohol Filling. Angewandte Chemie, 2019, 131, 12266-12270.	2.0	3
277	Throughâ€space 11 B– 27 Al correlation: Influence of the recoupling channel. Magnetic Resonance in Chemistry, 2021, 59, 1062-1076.	1.9	3
278	Evidence on Primary Pore Size Dependence of C–C Bond Coupling Inside Zr-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 24713-24722.	3.1	3
279	89Y chemical shift anisotropy: a sensitive structural probe of layered yttrium hydroxides revealed by solid-state NMR spectroscopy and DFT calculations. Physical Chemistry Chemical Physics, 2021, 23, 27244-27252.	2.8	3
280	Frontispiece: New Insight into the Hydrocarbon-Pool Chemistry of the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 from GC-MS, Solid-State NMR Spectroscopy, and DFT Calculations. Chemistry - A European Journal, 2014, 20, n/a-n/a.	3.3	2
281	Unusual bulky solvent molecule encapsulation in the organic-amine-occupied 10-membered ring channels of aluminophosphate molecular sieve AlPO4-11. Inorganic Chemistry Communication, 2018, 88, 6-10.	3.9	2
282	Ionothermal Synthesis of Hollow Aluminophosphate Molecular Sieves. Particle and Particle Systems Characterization, 2018, 35, 1800125.	2.3	2
283	gem â€Diolâ€Type Intermediate in the Activation of a Ketone on Snâ€Î² Zeolite as Studied by Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2020, 132, 19700-19706.	2.0	2
284	Dual Active Sites on Molybdenum/ZSMâ€5 Catalyst for Methane Dehydroaromatization: Insights from Solidâ€5tate NMR Spectroscopy. Angewandte Chemie, 2021, 133, 10804-10810.	2.0	2
285	Insight into Carbocation Induced Nonâ€covalent Interactions in Methanolâ€toâ€olefins Reaction over ZSMâ€5 Zeolite from Solidâ€5tate NMR Spectroscopy. Angewandte Chemie, 0, , .	2.0	2
286	Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catalysis Science and Technology, 2022, 12, 4442-4449.	4.1	2
287	Synthesis, Characterization and Adsorption Performance of Semi-crystalline/Liquid Crystalline Polyether Chelating Resins. E-Polymers, 2009, 9, .	3.0	1
288	Solid-State NMR Studies of Zeolites. Green Chemistry and Sustainable Technology, 2016, , 231-268.	0.7	1

#	Article	IF	CITATIONS
289	Conversion of Dihydroxyacetone to Methyl Pyruvate Catalyzed by Hybrid Molecular Sieves at Low Temperature: A Strategy for the Green Utilization of Glycerol. Catalysis Letters, 2020, 150, 1641-1649.	2.6	1
290	Oxidative Desulfurization: Confined Heteropoly Blues in Defected Zrâ€MOF (Bottle Around Ship) for Highâ€Efficiency Oxidative Desulfurization (Small 14/2020). Small, 2020, 16, 2070077.	10.0	1
291	Unraveling Hydrocarbon Pool Boosted Propane Aromatization on Gallium/ZSMâ€5 Zeolite by Solidâ€State Nuclear Magnetic Resonance Spectroscopy. Angewandte Chemie, 2021, 133, 23822-23826.	2.0	1
292	Bifunctionalized Metal–Organic Frameworks for Poreâ€Sizeâ€Dependent Enantioselective Sensing. Angewandte Chemie, 0, , .	2.0	1
293	Rù¼cktitelbild: Direct Detection of Supramolecular Reaction Centers in the Methanolâ€toâ€Olefins Conversion over Zeolite Hâ€ZSMâ€5 by ¹³ C– ²⁷ Al Solidâ€5tate NMR Spectroscopy (Angew. Chem. 7/2016). Angewandte Chemie, 2016, 128, 2648-2648.	2.0	0
294	Formation of aluminum diphosphonate mesostructures: The effect of aluminum source. Journal of Colloid and Interface Science, 2018, 532, 718-726.	9.4	0
295	Frontispiz: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, .	2.0	0
296	Titelbild: Insight into Carbocationâ€Induced Noncovalent Interactions in the Methanolâ€toâ€Olefins Reaction over ZSMâ€5 Zeolite by Solidâ€State NMR Spectroscopy (Angew. Chem. 51/2021). Angewandte Chemie, 2021, 133, 26617-26617.	2.0	0
297	Exploring the intercalation chemistry of layered yttrium hydroxides by 13C solid-state NMR spectroscopy. Magnetic Resonance Letters, 2022, , .	1.3	0
298	Identifying Crystallographically Different Siâ€OHâ€Al Brønsted Acid Sites in LTA Zeolites. Angewandte Chemie, 0, , .	2.0	0