Daniella Schatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493338/publications.pdf

Version: 2024-02-01

279798 454955 1,924 31 23 30 citations h-index g-index papers 39 39 39 2329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Complete Genome Sequence of <i>Emiliania huxleyi</i> Virus Strain M1, Isolated from an Induced <i>E. huxleyi</i> Bloom in Bergen, Norway. Microbiology Resource Announcements, 2022, 11, e0007122.	0.6	6
2	Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
3	Ecological significance of extracellular vesicles in modulating host-virus interactions during algal blooms. ISME Journal, 2021, 15, 3714-3721.	9.8	17
4	Viral infection of algal blooms leaves a unique metabolic footprint on the dissolved organic matter in the ocean. Science Advances, 2021, 7, .	10.3	32
5	Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean. Nature Microbiology, 2021, 6, 1357-1366.	13.3	33
6	A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Science Advances, 2020, 6, eaba4137.	10.3	55
7	In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids. Nature Microbiology, 2019, 4, 527-538.	13.3	52
8	Extracellular vesicles â€" new players in cellâ€"cell communication in aquatic environments. Current Opinion in Microbiology, 2018, 43, 148-154.	5.1	54
9	Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME Journal, 2018, 12, 704-713.	9.8	53
10	Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Science Advances, 2018, 4, eaau5716.	10.3	78
11	Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nature Microbiology, 2017, 2, 1485-1492.	13.3	56
12	Viral infection of the marine alga <i>Emiliania huxleyi</i> triggers lipidomeÂremodeling and induces the production of highly saturated triacylglycerol. New Phytologist, 2016, 210, 88-96.	7.3	98
13	Phosphorus starvation induces membrane remodeling and recycling in <i>Emiliania huxleyi</i> Phytologist, 2016, 211, 886-898.	7.3	78
14	Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME Journal, 2015, 9, 385-395.	9.8	59
15	Infection of phytoplankton by aerosolized marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6643-6647.	7.1	79
16	Mapping the diatom redox-sensitive proteome provides insight into response to nitrogen stress in the marine environment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2740-2745.	7.1	147
17	Zooplankton May Serve as Transmission Vectors for Viruses Infecting Algal Blooms in the Ocean. Current Biology, 2014, 24, 2592-2597.	3.9	48
18	Hijacking of an autophagyâ€like process is critical for the life cycle of a <scp>DNA</scp> virus infecting oceanic algal blooms. New Phytologist, 2014, 204, 854-863.	7.3	71

#	Article	lF	CITATIONS
19	Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of $\langle i \rangle$ Emiliania huxleyi $\langle i \rangle$, a Bloom-Forming Alga in the Ocean Â. Plant Cell, 2014, 26, 2689-2707.	6.6	132
20	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	3.9	110
21	Selfâ€suppression of biofilm formation in the cyanobacterium <i><scp>S</scp>ynechococcus elongatus</i> i>. Environmental Microbiology, 2013, 15, 1786-1794.	3.8	61
22	Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environmental Microbiology, 2007, 9, 965-970.	3.8	187
23	Inactivation of the extrinsic subunit of photosystem II, PsbU, inSynechococcusPCC 7942 results in elevated resistance to oxidative stress. FEBS Letters, 2006, 580, 2117-2122.	2.8	29
24	Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology, 2005, 7, 798-805.	3.8	62
25	Dinoflagellate-Cyanobacterium Communication May Determine the Composition of Phytoplankton Assemblage in a Mesotrophic Lake. Current Biology, 2002, 12, 1767-1772.	3.9	162
26	The Inorganic Carbon-Concentrating Mechanism of Cyanobacteria., 1999,, 561-571.		0
27	A putative HCO ^{â^'} ₃ transporter in the cyanobacterium <i>Synechococcus</i> sp. strain PCC 7942 ¹ . FEBS Letters, 1998, 430, 236-240.	2.8	56
28	Cyanobacterial mutants impaired in bicarbonate uptake isolated with the aid of an inactivation library. Canadian Journal of Botany, 1998, 76, 942-948.	1.1	4
29	The inorganic carbon-concentrating mechanism in cyanobacteria: induction and ecological significance. Canadian Journal of Botany, 1998, 76, 917-924.	1.1	8
30	The inorganic carbon-concentrating mechanism in cyanobacteria: induction and ecological significance. Canadian Journal of Botany, 1998, 76, 917-924.	1.1	22
31	Cyanobacterial mutants impaired in bicarbonate uptake isolated with the aid of an inactivation library. Canadian Journal of Botany, 1998, 76, 942-948.	1.1	8