John A Todd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8493325/publications.pdf

Version: 2024-02-01

298 papers 47,536 citations

2309 101 h-index 207 g-index

329 all docs 329 docs citations

times ranked

329

43563 citing authors

#	Article	IF	CITATIONS
1	HLA-DQ \hat{l}^2 gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature, 1987, 329, 599-604.	13.7	2,018
2	Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 2003, 423, 506-511.	13.7	1,980
3	Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nature Genetics, 2009, 41, 703-707.	9.4	1,513
4	A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 1994, 371, 130-136.	13.7	1,326
5	Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics, 2007, 39, 857-864.	9.4	1,324
6	Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genetics, 2007, 39, 1329-1337.	9.4	1,298
7	Genomic atlas of the human plasma proteome. Nature, 2018, 558, 73-79.	13.7	1,180
8	Haplotype tagging for the identification of common disease genes. Nature Genetics, 2001, 29, 233-237.	9.4	1,118
9	Genome-wide association studies: theoretical and practical concerns. Nature Reviews Genetics, 2005, 6, 109-118.	7.7	1,009
10	Rare Variants of <i>IFIH1</i> , a Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes. Science, 2009, 324, 387-389.	6.0	876
11	Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell, 2016, 167, 1369-1384.e19.	13.5	863
12	Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genetics, 1997, 15, 289-292.	9.4	745
13	Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 2010, 464, 713-720.	13.7	737
14	Genetic Analysis of Autoimmune Disease. Cell, 1996, 85, 311-318.	13.5	693
15	The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Human Molecular Genetics, 1996, 5, 1075-1080.	1.4	686
16	A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nature Genetics, 2006, 38, 1166-1172.	9.4	686
17	Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease. New England Journal of Medicine, 2008, 359, 2767-2777.	13.9	654
18	HLA DR-DQ Haplotypes and Genotypes and Type 1 Diabetes Risk. Diabetes, 2008, 57, 1084-1092.	0.3	631

#	Article	IF	CITATIONS
19	A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nature Genetics, 2006, 38, 617-619.	9.4	619
20	Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nature Genetics, 2015, 47, 381-386.	9.4	589
21	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	1.5	540
22	Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature, 1991, 351, 542-547.	13.7	513
23	Population structure, differential bias and genomic control in a large-scale, case-control association study. Nature Genetics, 2005, 37, 1243-1246.	9.4	496
24	Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature, 2007, 450, 887-892.	13.7	493
25	Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Research, 1990, 18, 4123-4130.	6.5	470
26	Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genetics, 2012, 44, 1294-1301.	9.4	469
27	Etiology of Type 1 Diabetes. Immunity, 2010, 32, 457-467.	6.6	463
28	Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nature Genetics, 2008, 40, 1399-1401.	9.4	456
29	Replication of an Association Between the Lymphoid Tyrosine Phosphatase Locus (LYP/PTPN22) With Type 1 Diabetes, and Evidence for Its Role as a General Autoimmunity Locus. Diabetes, 2004, 53, 3020-3023.	0.3	447
30	Detecting Disease Associations due to Linkage Disequilibrium Using Haplotype Tags: A Class of Tests and the Determinants of Statistical Power. Human Heredity, 2003, 56, 18-31.	0.4	392
31	Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genetics, 2007, 39, 1074-1082.	9.4	380
32	Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nature Communications, 2015, 6, 7000.	5.8	367
33	Towards fully automated genome–wide polymorphism screening. Nature Genetics, 1995, 9, 341-342.	9.4	340
34	Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nature Genetics, 2007, 39, 329-337.	9.4	333
35	A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nature Genetics, 1998, 19, 297-300.	9.4	316
36	Localization of a Type 1 Diabetes Locus in the IL2RA/CD25 Region by Use of Tag Single-Nucleotide Polymorphisms. American Journal of Human Genetics, 2005, 76, 773-779.	2.6	316

#	Article	lF	CITATIONS
37	Overexpression of the Cytokine BAFF and Autoimmunity Risk. New England Journal of Medicine, 2017, 376, 1615-1626.	13.9	301
38	Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet, The, 1997, 349, 986-990.	6.3	295
39	Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Research, 2021, 49, D1311-D1320.	6.5	295
40	Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project. Immunogenetics, 2008, 60, 1-18.	1.2	286
41	The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nature Genetics, 2010, 42, 68-71.	9.4	281
42	SARS-CoV-2 within-host diversity and transmission. Science, 2021, 372, .	6.0	278
43	A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature, 2010, 467, 460-464.	13.7	271
44	Association of the INS VNTR with size at birth. Nature Genetics, 1998, 19, 98-100.	9.4	270
45	A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes. Diabetes, 2014, 63, 2538-2550.	0.3	261
46	Complete MHC Haplotype Sequencing for Common Disease Gene Mapping. Genome Research, 2004, 14, 1176-1187.	2.4	260
47	Inherited Variation in Vitamin D Genes Is Associated With Predisposition to Autoimmune Disease Type 1 Diabetes. Diabetes, 2011, 60, 1624-1631.	0.3	260
48	HUMAN TYPE 1 DIABETES AND THE INSULIN GENE: Principles of Mapping Polygenes. Annual Review of Genetics, 1996, 30, 343-370.	3.2	259
49	Genetics of Type 1 Diabetes: What's Next?. Diabetes, 2010, 59, 1561-1571.	0.3	256
50	Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nature Genetics, 2009, 41, 1011-1015.	9.4	249
51	Seven Regions of the Genome Show Evidence of Linkage to Type 1 Diabetes in a Consensus Analysis of 767 Multiplex Families. American Journal of Human Genetics, 2001, 69, 820-830.	2.6	245
52	Genetic control of autoimmunity in type 1 diabetes. Trends in Immunology, 1990, 11, 122-129.	7.5	241
53	Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nature Genetics, 2015, 47, 898-905.	9.4	235
54	Functional IL6R 358Ala Allele Impairs Classical IL-6 Receptor Signaling and Influences Risk of Diverse Inflammatory Diseases. PLoS Genetics, 2013, 9, e1003444.	1.5	234

#	Article	IF	Citations
55	Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases. PLoS Genetics, 2011, 7, e1002216.	1.5	230
56	Parameters for reliable results in genetic association studies in common disease. Nature Genetics, 2002, 30, 149-150.	9.4	224
57	Type 1 Diabetes: Evidence for Susceptibility Loci from Four Genome-Wide Linkage Scans in 1,435 Multiplex Families. Diabetes, 2005, 54, 2995-3001.	0.3	221
58	Cloning of a novel member of the low-density lipoprotein receptor family. Gene, 1998, 216, 103-111.	1.0	212
59	IL2RA Genetic Heterogeneity in Multiple Sclerosis and Type 1 Diabetes Susceptibility and Soluble Interleukin-2 Receptor Production. PLoS Genetics, 2009, 5, e1000322.	1.5	210
60	An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nature Genetics, 2021, 53, 1527-1533.	9.4	208
61	Remapping the Insulin Gene/IDDM2 Locus in Type 1 Diabetes. Diabetes, 2004, 53, 1884-1889.	0.3	198
62	Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing. Human Molecular Genetics, 2010, 19, 122-134.	1.4	197
63	Isolation and Characterization of LRP6, a Novel Member of the Low Density Lipoprotein Receptor Gene Family. Biochemical and Biophysical Research Communications, 1998, 248, 879-888.	1.0	192
64	Association of the Vitamin D Metabolism Gene CYP27B1 With Type 1 Diabetes. Diabetes, 2007, 56, 2616-2621.	0.3	190
65	Absolute Risk of Childhood-Onset Type 1 Diabetes Defined by Human Leukocyte Antigen Class II Genotype: A Population-Based Study in the United Kingdom. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4037-4043.	1.8	189
66	Metagenomics and Personalized Medicine. Cell, 2011, 147, 44-56.	13.5	189
67	Blood and Islet Phenotypes Indicate Immunological Heterogeneity in Type 1 Diabetes. Diabetes, 2014, 63, 3835-3845.	0.3	189
68	Statistical false positive or true disease pathway?. Nature Genetics, 2006, 38, 731-733.	9.4	187
69	Type 1 Diabetes-Associated <i>IL2RA</i> Variation Lowers IL-2 Signaling and Contributes to Diminished CD4+CD25+ Regulatory T Cell Function. Journal of Immunology, 2012, 188, 4644-4653.	0.4	187
70	The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes. Nature Genetics, 2000, 25, 320-323.	9.4	186
71	Evaluation of Single Nucleotide Polymorphism Typing with Invader on PCR Amplicons and Its Automation. Genome Research, 2000, 10, 330-343.	2.4	186
72	Genetic Protection from the Inflammatory Disease Type 1 Diabetes in Humans and Animal Models. Immunity, 2001, 15, 387-395.	6.6	186

#	Article	IF	CITATIONS
73	Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature, 2013, 498, 232-235.	13.7	184
74	Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nature Genetics, 1997, 17, 350-352.	9.4	183
75	Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/lty/Bcg genes on chromosome 1. Nature, 1991, 353, 262-265.	13.7	181
76	Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Human Molecular Genetics, 2004, 13, 1633-1639.	1.4	175
77	Additional microsatellite markers for mouse genome mapping. Mammalian Genome, 1991, 1, 273-282.	1.0	169
78	Panning for gold: genome-wide scanning for linkage in type 1 diabetes. Human Molecular Genetics, 1996, 5, 1443-1448.	1.4	166
79	The Predisposition to Type 1 Diabetes Linked to the Human Leukocyte Antigen Complex Includes at Least One Non–Class II Gene. American Journal of Human Genetics, 1999, 64, 793-800.	2.6	166
80	A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 2022, 185, 916-938.e58.	13.5	164
81	A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Human Molecular Genetics, 2001, 10, 2025-2037.	1.4	159
82	Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History. PLoS Genetics, 2006, 2, e9.	1.5	156
83	The NOD Idd9 Genetic Interval Influences the Pathogenicity of Insulitis and Contains Molecular Variants of Cd30, Tnfr2, and Cd137. Immunity, 2000, 13, 107-115.	6.6	153
84	The insulin gene VNTR, type 2 diabetes and birth weight. Nature Genetics, 1999, 21, 262-263.	9.4	152
85	The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics, 1991, 10, 874-881.	1.3	151
86	IDDM2-VNTR-encoded Susceptibility to Type 1 Diabetes: Dominant Protection and Parental Transmission of Alleles of the Insulin Gene-linked Minisatellite Locus. Journal of Autoimmunity, 1996, 9, 415-421.	3.0	150
87	Type 1 diabetes genes and pathways shared by humans and NOD mice. Journal of Autoimmunity, 2005, 25, 29-33.	3.0	145
88	Seven newly identified loci for autoimmune thyroid disease. Human Molecular Genetics, 2012, 21, 5202-5208.	1.4	143
89	Regression Mapping of Association between the Human Leukocyte Antigen Region and Graves Disease. American Journal of Human Genetics, 2005, 76, 157-163.	2.6	134
90	Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Human Molecular Genetics, 2015, 24, 3305-3313.	1.4	134

#	Article	IF	CITATIONS
91	Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nature Genetics, 2021, 53, 962-971.	9.4	133
92	A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. Journal of Autoimmunity, 2018, 95, 1-14.	3.0	129
93	Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nature Genetics, 2015, 47, 839-846.	9.4	128
94	Congenic Mapping of the Type 1 Diabetes Locus, Idd3, to a 780-kb Region of Mouse Chromosome 3: Identification of a Candidate Segment of Ancestral DNA by Haplotype Mapping. Genome Research, 2000, 10, 446-453.	2.4	126
95	Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nature Genetics, 2018, 50, 1366-1374.	9.4	122
96	A male-female bias in type 1 diabetes and linkage to chromosome Xp in MHC HLA-DR3-positive patients. Nature Genetics, 1998, 19, 301-302.	9.4	119
97	From genome to aetiology in a multifactorial disease, type 1 diabetes. BioEssays, 1999, 21, 164-174.	1.2	118
98	Major factors influencing linkage disequilibrium by analysis of different chromosome regions in distinct populations: demography, chromosome recombination frequency and selection. Human Molecular Genetics, 2000, 9, 2947-2957.	1.4	117
99	Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial. PLoS Medicine, 2016, 13, e1002139.	3.9	117
100	The impact of proinflammatory cytokines on the \hat{l}^2 -cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nature Genetics, 2019, 51, 1588-1595.	9.4	117
101	The Type 1 Diabetes Genetics Consortium. Annals of the New York Academy of Sciences, 2006, 1079, 1-8.	1.8	116
102	IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia, 2015, 58, 781-790.	2.9	116
103	Genetic Analysis of Adult-Onset Autoimmune Diabetes. Diabetes, 2011, 60, 2645-2653.	0.3	115
104	Association of the interleukin-2 receptor alpha (IL-2R?)/CD25 gene region with Graves' disease using a multilocus test and tag SNPs. Clinical Endocrinology, 2007, 66, 070208104737001-???.	1.2	114
105	<i>FUT2</i> Nonsecretor Status Links Type 1 Diabetes Susceptibility and Resistance to Infection. Diabetes, 2011, 60, 3081-3084.	0.3	111
106	Unbiased Application of the Transmission/Disequilibrium Test to Multilocus Haplotypes. American Journal of Human Genetics, 2000, 66, 2009-2012.	2.6	109
107	A Human Type 1 Diabetes Susceptibility Locus Maps to Chromosome 21q22.3. Diabetes, 2008, 57, 2858-2861.	0.3	103
108	Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Human Molecular Genetics, 2012, 21, 2815-2824.	1.4	103

#	Article	IF	Citations
109	Fine Mapping, Gene Content, Comparative Sequencing, and Expression Analyses Support <i>Ctla4</i> and <i>Nramp1</i> as Candidates for <i>Idd5.1</i> and <i>Idd5.2</i> iii the Nonobese Diabetic Mouse. Journal of Immunology, 2004, 173, 164-173.	0.4	102
110	Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Human Molecular Genetics, 2012, 21, 322-333.	1.4	100
111	Multifactorial inheritance in type 1 diabetes. Trends in Genetics, 1995, 11, 499-504.	2.9	93
112	Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nature Genetics, 2021, 53, 1606-1615.	9.4	93
113	Proteome-Wide Analysis of Disease-Associated SNPs That Show Allele-Specific Transcription Factor Binding. PLoS Genetics, 2012, 8, e1002982.	1.5	92
114	Childhood adiposity and risk of type 1 diabetes: A Mendelian randomization study. PLoS Medicine, 2017, 14, e1002362.	3.9	90
115	Prevalence of Abnormal Lipid Profiles and the Relationship With the Development of Microalbuminuria in Adolescents With Type 1 Diabetes. Diabetes Care, 2009, 32, 658-663.	4.3	89
116	Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics, 2009, 10, 327-334.	0.9	89
117	Genetic Control of Autoimmunity: Protection from Diabetes, but Spontaneous Autoimmune Biliary Disease in a Nonobese Diabetic Congenic Strain. Journal of Immunology, 2004, 173, 2315-2323.	0.4	88
118	A molecular basis for genetic susceptibility to insulin-dependent diabetes mellitus. Trends in Genetics, 1988, 4, 129-134.	2.9	87
119	Genome-Wide Scan for Linkage to Type 1 Diabetes in 2,496 Multiplex Families From the Type 1 Diabetes Genetics Consortium. Diabetes, 2009, 58, 1018-1022.	0.3	87
120	Tackling common disease. Nature, 2001, 411, 537-539.	13.7	82
121	A novel and major association of HLA-C in Graves' disease that eclipses the classical HLA-DRB1 effect. Human Molecular Genetics, 2007, 16, 2149-2153.	1.4	82
122	Reduced Expression of IFIH1 Is Protective for Type 1 Diabetes. PLoS ONE, 2010, 5, e12646.	1.1	82
123	<i>PTPN22</i> Trp620 Explains the Association of Chromosome 1p13 With Type 1 Diabetes and Shows a Statistical Interaction With HLA Class II Genotypes. Diabetes, 2008, 57, 1730-1737.	0.3	78
124	Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. Journal of Autoimmunity, 2017, 84, 75-86.	3.0	78
125	Analysis of the Vitamin D Receptor Gene Sequence Variants in Type 1 Diabetes. Diabetes, 2004, 53, 2709-2712.	0.3	76
126	Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. Mammalian Genome, 1991, 1, 206-210.	1.0	74

#	Article	IF	CITATIONS
127	Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans. BMC Genetics, 2005, 6, 22.	2.7	72
128	Statistical Modeling of Interlocus Interactions in a Complex Disease: Rejection of the Multiplicative Model of Epistasis in Type 1 Diabetes. Genetics, 2001, 158, 357-367.	1.2	72
129	Experimental aspects of copy number variant assays at CCL3L1. Nature Medicine, 2009, 15, 1115-1117.	15.2	69
130	T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research. Nucleic Acids Research, 2011, 39, D997-D1001.	6.5	68
131	Chromosome contacts in activated T cells identify autoimmune disease candidate genes. Genome Biology, 2017, 18, 165.	3.8	68
132	DIFFERENTIAL GLYCOSYLATION OF INTERLEUKIN 2, THE MOLECULAR BASIS FOR THE NOD Idd3 TYPE 1 DIABETES GENE?. Cytokine, 2000, 12, 477-482.	1.4	66
133	Transmission ratio distortion at the INS-IGF2 VNTR. Nature Genetics, 1999, 22, 324-325.	9.4	65
134	Assessing the validity of the association between the SUMO4 M55V variant and risk of type 1 diabetes. Nature Genetics, 2005, 37, 110-111.	9.4	65
135	Chapter 6 Gene–Gene Interactions in the NOD Mouse Model of Type 1 Diabetes. Advances in Immunology, 2008, 100, 151-175.	1.1	65
136	Ten years of genetics and genomics: what have we achieved and where are we heading?. Nature Reviews Genetics, 2010, 11, 723-733.	7.7	65
137	Haplotype Structure, LD Blocks, and Uneven Recombination Within the LRP5 Gene. Genome Research, 2003, 13, 845-855.	2.4	64
138	A Method to Address Differential Bias in Genotyping in Large-Scale Association Studies. PLoS Genetics, 2007, 3, e74.	1.5	63
139	The inter-regional distribution of HLA class II haplotypes indicates the suitability of the Sardinian population for case-control association studies in complex diseases. Human Molecular Genetics, 2000, 9, 2959-2965.	1.4	62
140	Maternal-Fetal Interactions and Birth Order Influence Insulin Variable Number of Tandem Repeats Allele Class Associations with Head Size at Birth and Childhood Weight Gain. Diabetes, 2004, 53, 1128-1133.	0.3	62
141	Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open, 2019, 9, e028578.	0.8	62
142	Association of IL13 with total IgE: Evidence against an inverse association of atopy and diabetes. Journal of Allergy and Clinical Immunology, 2006, 117, 1306-1313.	1.5	61
143	Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nature Genetics, 2008, 40, 261-262.	9.4	61
144	Discovery of CD80 and CD86 as recent activation markers on regulatory T cells by protein-RNA single-cell analysis. Genome Medicine, 2020, 12, 55.	3.6	61

#	Article	IF	CITATIONS
145	T1DBase: integration and presentation of complex data for type 1 diabetes research. Nucleic Acids Research, 2007, 35, D742-D746.	6.5	60
146	Evidence of Gene-Gene Interaction and Age-at-Diagnosis Effects in Type 1 Diabetes. Diabetes, 2012, 61, 3012-3017.	0.3	60
147	Postthymic Expansion in Human CD4 Naive T Cells Defined by Expression of Functional High-Affinity IL-2 Receptors. Journal of Immunology, 2013, 190, 2554-2566.	0.4	60
148	Genetic Variants Predisposing Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes That Function in the Immune System and in Pancreatic \hat{l}^2 -Cells. Diabetes Care, 2020, 43, 169-177.	4.3	60
149	Expression of the Type I Diabetes-associated Gene LRP5 in Macrophages, Vitamin A System Cells, and the Islets of Langerhans Suggests Multiple Potential Roles in Diabetes. Journal of Histochemistry and Cytochemistry, 2000, 48, 1357-1368.	1.3	59
150	Approaches and advances in the genetic causes of autoimmune disease and their implications. Nature Immunology, 2018, 19, 674-684.	7.0	58
151	Evidence That HLA Class I and II Associations With Type 1 Diabetes, Autoantibodies to GAD and Autoantibodies to IA-2, Are Distinct. Diabetes, 2011, 60, 2635-2644.	0.3	57
152	Fine Mapping of the Diabetes-Susceptibility Locus, IDDM4, on Chromosome 11q13. American Journal of Human Genetics, 1998, 63, 547-556.	2.6	56
153	Association of Human Endogenous Retrovirus K-18 Polymorphisms With Type 1 Diabetes. Diabetes, 2004, 53, 852-854.	0.3	56
154	Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping. PLoS Genetics, 2015, 11, e1005272.	1.5	55
155	Genetic and functional association of the immune signaling molecule 4-1BB (CD137/TNFRSF9) with type 1 diabetes. Journal of Autoimmunity, 2005, 25, 13-20.	3.0	54
156	Interactions between <i>Idd5.1/Ctla4</i> and Other Type 1 Diabetes Genes. Journal of Immunology, 2007, 179, 8341-8349.	0.4	54
157	A Method for Geneâ€Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations. Genetic Epidemiology, 2014, 38, 661-670.	0.6	54
158	Saturation multipoint linkage mapping of chromosome 6q in type 1 diabetes. Human Molecular Genetics, 1996, 5, 1071-1074.	1.4	53
159	Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Trends in Molecular Medicine, 2017, 23, $181-194$.	3. 5	53
160	Preventing type 1 diabetes in childhood. Science, 2021, 373, 506-510.	6.0	52
161	Analysis of the CD3 gene region and type 1 diabetes: application of fluorescence-based technology to linkage disequilibrium mapping. Human Molecular Genetics, 1995, 4, 197-202.	1.4	51
162	Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases. BMC Medical Genetics, 2006, 7, 20.	2.1	51

#	Article	lF	CITATIONS
163	Contrasting genetic association of IL2RAwith SLE and ANCA $\hat{a} \in \text{``associated vasculitis. BMC Medical Genetics, 2009, 10, 22.}$	2.1	51
164	The IL23R A/Gln381 Allele Promotes IL-23 Unresponsiveness in Human Memory T-Helper 17 Cells and Impairs Th17 Responses in Psoriasis Patients. Journal of Investigative Dermatology, 2013, 133, 2381-2389.	0.3	51
165	Genetics of autoimmune disease. Current Opinion in Immunology, 1995, 7, 786-792.	2.4	50
166	An Allele of IKZF1 (Ikaros) Conferring Susceptibility to Childhood Acute Lymphoblastic Leukemia Protects Against Type 1 Diabetes. Diabetes, 2011, 60, 1041-1044.	0.3	50
167	Extreme Clonality in Lymphoblastoid Cell Lines with Implications for Allele Specific Expression Analyses. PLoS ONE, 2008, 3, e2966.	1.1	50
168	The Derivation of Highly Germline-Competent Embryonic Stem Cells Containing NOD-Derived Genome. Diabetes, 2003, 52, 205-208.	0.3	47
169	No Association Between Variation of the FOXP3 Gene and Common Type 1 Diabetes in the Sardinian Population. Diabetes, 2004, 53, 1911-1914.	0.3	47
170	Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes. Diabetes, 2015, 64, 3891-3902.	0.3	46
171	Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2. JCI Insight, 2017, 2, .	2.3	46
172	Molecular genetics of diabetes mellitus. Bailliere's Clinical Endocrinology and Metabolism, 1995, 9, 631-656.	1.0	45
173	Linkage and association mapping of the LRP5 locus on chromosomeÂ11q13 in typeÂ1 diabetes. Human Genetics, 2003, 113, 99-105.	1.8	44
174	T1DBase, a community web-based resource for type 1 diabetes research. Nucleic Acids Research, 2004, 33, D544-D549.	6.5	44
175	The candidate genes TAF5L, TCF7, PDCD1 , IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes. BMC Medical Genetics, 2007, 8, 71.	2.1	44
176	Rare and functional SIAE variants are not associated with autoimmune disease risk in up to 66,924 individuals of European ancestry. Nature Genetics, 2012, 44, 3-5.	9.4	44
177	Genetic association analyses of atopic illness and proinflammatory cytokine genes with type 1 diabetes. Diabetes/Metabolism Research and Reviews, $2011, 27, 838-843$.	1.7	43
178	Tests for Genetic Interactions in Type 1 Diabetes. Diabetes, 2011, 60, 1030-1040.	0.3	43
179	No Evidence of Association or Interaction between the IL4RA, IL4, and IL13 Genes in Type 1 Diabetes. American Journal of Human Genetics, 2005, 76, 517-521.	2.6	42
180	Next Generation Sequencing Reveals the Association of DRB3*02:02 With Type 1 Diabetes. Diabetes, 2013, 62, 2618-2622.	0.3	42

#	Article	IF	CITATIONS
181	Analysis of the Type 2 Diabetes-Associated Single Nucleotide Polymorphisms in the Genes IRS1, KCNJ11, and PPARG2 in Type 1 Diabetes. Diabetes, 2004, 53, 870-873.	0.3	41
182	Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Lancet, The, 1997, 349, 1771-1772.	6.3	39
183	A Practical Approach to Identification of Susceptibility Genes for IDDM. Diabetes, 1992, 41, 1029-1034.	0.3	38
184	Association of intercellular adhesion molecule-1 gene with type 1 diabetes. Lancet, The, 2003, 362, 1723-1724.	6.3	38
185	Genome bioinformatic analysis of nonsynonymous SNPs. BMC Bioinformatics, 2007, 8, 301.	1.2	38
186	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nature Communications, 2021, 12, 5861.	5.8	38
187	La carte des microsatellites est arrivee!. Human Molecular Genetics, 1992, 1, 663-666.	1.4	37
188	The Sequence and Gene Characterization of a 400-kb Candidate Region for IDDM4 on Chromosome 11q13. Genomics, 2001, 72, 231-242.	1.3	37
189	The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5Âyears of age. Diabetologia, 2018, 61, 147-157.	2.9	37
190	Mutation of the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect?. Human Molecular Genetics, 1995, 4, 1609-1612.	1.4	36
191	Divergence between Genetic Determinants of IGF2Transcription Levels in Leukocytes and of IDDM2-Encoded Susceptibility to Type 1 Diabetes 1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 2933-2939.	1.8	36
192	The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Research and Therapy, 2018, 20, 152.	1.6	36
193	Resequencing and association analysis of the SP110 gene in adult pulmonary tuberculosis. Human Genetics, 2007, 121, 155-160.	1.8	35
194	Sequencing-Based Genotyping and Association Analysis of the MICA and MICB Genes in Type 1 Diabetes. Diabetes, 2008, 57, 1753-1756.	0.3	35
195	Analysis of Polymorphisms of the Interleukin-18 Gene in Type 1 Diabetes and Hardy-Weinberg Equilibrium Testing. Diabetes, 2006, 55, 559-562.	0.3	34
196	Childhood body size directly increases type 1 diabetes risk based on a lifecourse Mendelian randomization approach. Nature Communications, 2022, 13, 2337.	5.8	34
197	Rationale and study design of the Adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D): a non-randomised, open label, adaptive dose finding trial. BMJ Open, 2014, 4, e005559-e005559.	0.8	33
198	Differential expression of penicillin-binding protein structural genes duringBacillus subtilissporulation. FEMS Microbiology Letters, 1983, 18, 197-202.	0.7	32

#	Article	IF	Citations
199	Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trialsâ€"GPPADâ€02 study design and first results. Pediatric Diabetes, 2019, 20, 720-727.	1.2	31
200	Chronic Immune Activation in Systemic Lupus Erythematosus and the Autoimmune PTPN22 Trp620 Risk Allele Drive the Expansion of FOXP3+ Regulatory T Cells and PD-1 Expression. Frontiers in Immunology, 2019, 10, 2606.	2.2	31
201	CD70 expression determines the therapeutic efficacy of expanded human regulatory T cells. Communications Biology, 2020, 3, 375.	2.0	31
202	HLA antigens and insulin-dependent diabetes. Nature, 1988, 333, 710-710.	13.7	30
203	Heterogeneity in the Magnitude of the Insulin Gene Effect on HLA Risk in Type 1 Diabetes. Diabetes, 2004, 53, 3286-3291.	0.3	30
204	Investigating the utility of combining phi29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping. BMC Biotechnology, 2004, 4, 15.	1.7	30
205	No evidence for a major effect of two common polymorphisms of the catalase gene in type 1 diabetes susceptibility. Diabetes/Metabolism Research and Reviews, 2006, 22, 356-360.	1.7	30
206	Identification of <i>Cd101</i> as a Susceptibility Gene for <i>Novosphingobium aromaticivorans</i> -Induced Liver Autoimmunity. Journal of Immunology, 2011, 187, 337-349.	0.4	30
207	Investigation of Soluble and Transmembrane CTLA-4 Isoforms in Serum and Microvesicles. Journal of Immunology, 2014, 193, 889-900.	0.4	30
208	Plasma concentrations of soluble IL-2 receptor $\hat{l}\pm$ (CD25) are increased in type 1 diabetes and associated with reduced C-peptide levels in young patients. Diabetologia, 2014, 57, 366-372.	2.9	30
209	Nonobese Diabetic Congenic Strain Analysis of Autoimmune Diabetes Reveals Genetic Complexity of the Idd18 Locus and Identifies Vav3 as a Candidate Gene. Journal of Immunology, 2010, 184, 5075-5084.	0.4	29
210	A method for identifying genetic heterogeneity within phenotypically defined disease subgroups. Nature Genetics, 2017, 49, 310-316.	9.4	29
211	The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight, 2018, 3, .	2.3	29
212	The usefulness of different density SNP maps for disease association studies of common variants. Human Molecular Genetics, 2003, 12, 3145-3149.	1.4	28
213	Haplotype Tag Single Nucleotide Polymorphism Analysis of the Human Orthologues of the Rat Type 1 Diabetes Genes Ian4 (Lyp/Iddm1) and Cblb. Diabetes, 2004, 53, 505-509.	0.3	28
214	Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity. Diabetologia, 2017, 60, 35-38.	2.9	28
215	The sporulation-specific penicillin-binding protein 5a from <i>Bacillus subtilis</i> is a <scp>dd</scp> -carboxypeptidase <i>in vitro</i> Biochemical Journal, 1985, 230, 825-828.	1.7	27
216	Framework YAC Contig Anchored into a 3.2-Mb High-Resolution Physical Map in Proximal 11q13. Genomics, 1997, 40, 13-23.	1.3	27

#	Article	IF	Citations
217	Identification of a Structurally Distinct CD101 Molecule Encoded in the 950-kb Idd10 Region of NOD Mice. Diabetes, 2003, 52, 1551-1556.	0.3	27
218	Human IL-6R hi TIGIT \hat{a} CD4 + CD127 low CD25 + T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clinical Immunology, 2017, 179, 25-39.	1.4	27
219	Allele-specific methylation of type 1 diabetes susceptibility genes. Journal of Autoimmunity, 2018, 89, 63-74.	3.0	27
220	Commonality in the genetic control of TypeÂ1 diabetes in humans and NOD mice: variants of genes in the IL-2 pathway are associated with autoimmune diabetes in both species. Biochemical Society Transactions, 2008, 36, 312-315.	1.6	26
221	Evidence that <i>Cd101 </i> Is an Autoimmune Diabetes Gene in Nonobese Diabetic Mice. Journal of Immunology, 2011, 187, 325-336.	0.4	26
222	Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing. European Journal of Immunology, 2015, 45, 3200-3203.	1.6	26
223	Alteration in the penicillin-binding profile of Bacillus megaterium during sporulation. Nature, 1982, 300, 640-643.	13.7	24
224	Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC Medical Genetics, 2011, 12, 59.	2.1	24
225	Lack of Association of the Ala45Thr Polymorphism and Other Common Variants of the NeuroD Gene With Type 1 Diabetes. Diabetes, 2004, 53, 1158-1161.	0.3	22
226	Using de novo assembly to identify structural variation of eight complex immune system gene regions. PLoS Computational Biology, 2021, 17, e1009254.	1.5	22
227	7 Trans-racial gene mapping studies. Bailliere's Clinical Endocrinology and Metabolism, 1991, 5, 321-340.	1.0	21
228	Sex-Related Bias and Exclusion Mapping of the Nonrecombinant Portion of Chromosome Y in Human Type 1 Diabetes in the Isolated Founder Population of Sardinia. Diabetes, 2002, 51, 3573-3576.	0.3	21
229	Association mapping of complex diseases in linked regions: estimation of genetic effects and feasibility of testing rare variants. Genetic Epidemiology, 2003, 24, 36-43.	0.6	21
230	Mouse Chromosome 3. Mammalian Genome, 1992, 3, S44-S54.	1.0	20
231	Protocol of the adaptive study of IL-2 dose frequency on regulatory T cells in type 1 diabetes (DILfrequency): a mechanistic, non-randomised, repeat dose, open-label, response-adaptive study. BMJ Open, 2015, 5, e009799.	0.8	20
232	Detection and correction of artefacts in estimation of rare copy number variants and analysis of rare deletions in type 1 diabetes. Human Molecular Genetics, 2015 , 24 , 1774 - 1790 .	1.4	20
233	Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease. Diabetes, 2016, 65, 3233-3239.	0.3	20
234	Analysis of overlapping genetic association in type 1 and type 2 diabetes. Diabetologia, 2021, 64, 1342-1347.	2.9	20

#	Article	IF	Citations
235	Linkage analysis of 84 microsatellite markers in intra- and interspecific backcrosses. Mammalian Genome, 1992, 3, 457-460.	1.0	19
236	Comparison of population- and family-based methods for genetic association analysis in the presence of interacting loci. Genetic Epidemiology, 2005, 29, 51-67.	0.6	19
237	Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes. BMC Genetics, 2005, 6, 9.	2.7	19
238	Molecular analysis of the MHC class II region in DR4, DR7, and DR9 haplotypes. Immunogenetics, 1991, 34, 349-357.	1.2	18
239	Transcribing diabetes. Nature, 1996, 384, 407-408.	13.7	18
240	A Genome-Wide Assessment of the Role of Untagged Copy Number Variants in Type 1 Diabetes. PLoS Genetics, 2014, 10, e1004367.	1.5	17
241	A Comprehensive, Statistically Powered Analysis of GAD2 in Type 1 Diabetes. Diabetes, 2002, 51, 2866-2870.	0.3	16
242	No Evidence for Association of OAS1 With Type 1 Diabetes in Unaffected Siblings or Type 1 Diabetic Cases. Diabetes, 2006, 55, 1525-1528.	0.3	16
243	Evidence that UBASH3 is a causal gene for type 1 diabetes. European Journal of Human Genetics, 2018, 26, 925-927.	1.4	16
244	Interleukin-2 Therapy of Autoimmunity in Diabetes (ITAD): a phase 2, multicentre, double-blind, randomized, placebo-controlled trial. Wellcome Open Research, 2020, 5, 49.	0.9	16
245	Development of an integrated genome informatics, data management and workflow infrastructure: A toolbox for the study of complex disease genetics. Human Genomics, 2004, 1, 98.	1.4	15
246	Detection and frequency estimation of rare variants in pools of genomic DNA from large populations using mutational spectrometry. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 570, 267-280.	0.4	15
247	Interaction analysis of the CBLB and CTLA4 genes in type 1 diabetes. Journal of Leukocyte Biology, 2007, 81, 581-583.	1.5	15
248	The PTPN22 Locus and Rheumatoid Arthritis: No Evidence for an Effect on Risk Independent of Arg620Trp. PLoS ONE, 2010, 5, e13544.	1.1	15
249	D'oh! Genes and Environment Cause Crohn's Disease. Cell, 2010, 141, 1114-1116.	13.5	15
250	First Domain Sequence Diversity of DR and DQ Subregion Alleles. , 1989, , 1027-1031.		15
251	Supplementation with <i>Bifidobacterium longum</i> subspecies <i>infantis</i> EVC001 for mitigation of type 1 diabetes autoimmunity: the GPPAD-SINT1A randomised controlled trial protocol. BMJ Open, 2021, 11, e052449.	0.8	15
252	Mapping multiple linked quantitative trait loci in non-obese diabetic mice using a stepwise regression strategy. Genetical Research, 1998, 71, 51-64.	0.3	14

#	Article	IF	CITATIONS
253	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 2017, 2, 28.	0.9	14
254	Mouse microsatellites from a flow-sorted 4:6 Robertsonian chromosome. Mammalian Genome, 1992, 3, 620-624.	1.0	13
255	<i>PRF1</i> mutation alters immune system activation, inflammation, and risk of autoimmunity. Multiple Sclerosis Journal, 2021, 27, 1332-1340.	1.4	13
256	The environment strikes back. Current Opinion in Immunology, 1993, 5, 863-865.	2.4	12
257	NKG2D-RAE-1 Receptor-Ligand Variation Does Not Account for the NK Cell Defect in Nonobese Diabetic Mice. Journal of Immunology, 2008, 181, 7073-7080.	0.4	12
258	Fluorescence Intensity Normalisation: Correcting for Time Effects in Large-Scale Flow Cytometric Analysis. Advances in Bioinformatics, 2009, 2009, 1-6.	5.7	12
259	A hybrid qPCR/SNP array approach allows cost efficient assessment of KIR gene copy numbers in large samples. BMC Genomics, 2014, 15, 274.	1.2	12
260	Circulating C-Peptide Levels in Living Children and Young People and Pancreatic \hat{l}^2 -Cell Loss in Pancreas Donors Across Type 1 Diabetes Disease Duration. Diabetes, 2022, 71, 1591-1596.	0.3	12
261	Mouse chromosome 3. Mammalian Genome, 1993, 4, S47-S57.	1.0	11
262	Association Analysis of the Lymphocyte-Specific Protein Tyrosine Kinase (LCK) Gene in Type 1 Diabetes. Diabetes, 2004, 53, 2479-2482.	0.3	11
263	Discovery, linkage disequilibrium and association analyses of polymorphisms of the immune complement inhibitor, decay-accelerating factor gene (DAF/CD55) in type 1 diabetes. BMC Genetics, 2006, 7, 22.	2.7	11
264	Stem cells and a cure for type 1 diabetes?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15523-15524.	3.3	11
265	Association analysis of myosin IXB and type 1 diabetes. Human Immunology, 2010, 71, 598-601.	1.2	11
266	Sequencing and association analysis of the type 1 diabetes $\hat{a} \in$ linked region on chromosome 10p12-q11. BMC Genetics, 2007, 8, 24.	2.7	10
267	Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2015, 195, 4841-4852.	0.4	10
268	Limitations of stratifying sib-pair data in common disease linkage studies: An example using chromosome 10p14-10q11 in type 1 diabetes. American Journal of Medical Genetics Part A, 2002, 113, 158-166.	2.4	9
269	Effective recruitment of participants to a phase I study using the internet and publicity releases through charities and patient organisations: analysis of the adaptive study of IL-2 dose on regulatory T cells in type 1 diabetes (DILT1D). Trials, 2015, 16, 86.	0.7	9
270	Intolerable secretion and diabetes in tolerant transgenic mice, revisited. Nature Genetics, 2016, 48, 476-477.	9.4	9

#	Article	IF	CITATIONS
271	Reply to "Insulin expression: is VNTR allele 698 really anomalous?― Nature Genetics, 1995, 10, 379-380.	9.4	8
272	The murine type 1 diabetes loci, Idd1, Idd3, Idd5, Idd9, and Idd17/10/18, do not control thymic CD4 \hat{a}^{2} CD8 \hat{a}^{2} /TCR \hat{a}^{2} + deficiency in the nonobese diabetic mouse. Mammalian Genome, 2001, 12, 175-176.	1.0	8
273	Constitutive Antiviral Immunity at the Expense of Autoimmunity. Immunity, 2014, 40, 167-169.	6.6	8
274	In-depth immunophenotyping data of IL-6R on the human peripheral regulatory T cell (Treg) compartment. Data in Brief, 2017, 12, 676-691.	0.5	8
275	Extra-binomial variation approach for analysis of pooled DNA sequencing data. Bioinformatics, 2012, 28, 2898-2904.	1.8	7
276	No evidence for association of the TATA-box binding protein glutamine repeat sequence or the flanking chromosome $6q27$ region with type 1 diabetes. Biochemical and Biophysical Research Communications, 2005, 331, 435-441.	1.0	6
277	Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and natural killer cells in systemic lupus erythematosus. Wellcome Open Research, 2021, 6, 149.	0.9	6
278	From genome to aetiology in a multifactorial disease, type 1 diabetes. , 1999, 21, 164.		6
279	Capturing the systemic immune signature of a norovirus infection: an n-of-1 case study within a clinical trial. Wellcome Open Research, 0, 2, 28.	0.9	6
280	Transmission-Ratio Distortion at $Xp11.4$ - $p21.1$ in Type 1 Diabetes. American Journal of Human Genetics, 2000, 66, 330-332.	2.6	5
281	Editorial overview Genetic dissection of tolerance. Current Opinion in Immunology, 1992, 4, 699-702.	2.4	4
282	Polymorphism discovery and association analyses of the interferon genes in type 1 diabetes. BMC Genetics, 2006, 7, 12.	2.7	4
283	A multimarker regression-based test of linkage for affected sib-pairs at two linked loci. Genetic Epidemiology, 2006, 30, 191-208.	0.6	4
284	The interaction of nocardicin A with the penicillin-binding proteins of Bacillus megaterium KM. FEBS Journal, 1983, 136, 545-551.	0.2	3
285	Diabetes mellitus. Current Opinion in Genetics and Development, 1992, 2, 474-478.	1.5	3
286	Validity of the Familyâ€Based Association Test for Copy Number Variant Data in the Case of Nonâ€Linear Intensityâ€Genotype Relationship. Genetic Epidemiology, 2012, 36, 895-898.	0.6	3
287	Molecular Structure of Human Class II Antigens. , 1989, , 40-49.		3
288	Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and natural killer cells in systemic lupus erythematosus. Wellcome Open Research, 0, 6, 149.	0.9	3

#	Article	IF	CITATIONS
289	Prevention of type 1 diabetes: what next?. Lancet, The, 2008, 372, 1710-1711.	6.3	2
290	In vivo negative regulation of SARS-CoV-2 receptor, ACE2, by interferons and its genetic control. Wellcome Open Research, 0, 6, 47.	0.9	2
291	Diabetes genes — mutatis mutandis. Nature, 1995, 374, 601-602.	13.7	1
292	A method to address differential bias in genotyping in large scale association studies. PLoS Genetics, 2005, preprint, e74.	1.5	1
293	Mapping MHC Class II Genes and Disease-Susceptibility: Use of Polymerase Chain Reaction and Dot Hybridization for Human Leukocyte Antigen Allele Typing. , 1993, 15, 95-112.		0
294	Linkage of Chromosome 6 and Type 1 Diabetes. DNA Sequence, 1996, 7, 25-26.	0.7	0
295	Individuals from multiplex insulin dependent diabetes mellitus families express higher levels of TCRBV2S1 than controls. Biochemical Society Transactions, 1997, 25, 314S-314S.	1.6	0
296	From genomics to aetiology in the multifactorial disease type-1 diabetes. Biochemical Society Transactions, 1999, 27, A1-A1.	1.6	0
297	Characterization of HLA-DRÎ 2 and HLA DQÎ 2 Alleles Associated with Pemphigus Vulgaris. , 1989, , 426-428.		0
298	The HLA-DQB1 Gene Contributes to the Genetic Susceptibility to Insulin-Dependent Diabetes Mellitus. , 1989, , 402-403.		O