Bob Pressey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492975/publications.pdf Version: 2024-02-01

		7096	6300
229	26,984	78	158
papers	citations	h-index	g-index
231	231	231	17372
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Systematic conservation planning. Nature, 2000, 405, 243-253.	27.8	4,329
2	Effectiveness of the global protected area network in representing species diversity. Nature, 2004, 428, 640-643.	27.8	1,149
3	Beyond opportunism: Key principles for systematic reserve selection. Trends in Ecology and Evolution, 1993, 8, 124-128.	8.7	887
4	Conservation planning in a changing world. Trends in Ecology and Evolution, 2007, 22, 583-592.	8.7	842
5	Selecting networks of reserves to maximise biological diversity. Biological Conservation, 1988, 43, 63-76.	4.1	610
6	A Comparison of Richness Hotspots, Rarity Hotspots, and Complementary Areas for Conserving Diversity of British Birds. Conservation Biology, 1996, 10, 155-174.	4.7	545
7	Global Gap Analysis: Priority Regions for Expanding the Global Protected-Area Network. BioScience, 2004, 54, 1092.	4.9	516
8	Is conservation triage just smart decision making?. Trends in Ecology and Evolution, 2008, 23, 649-654.	8.7	501
9	Ad Hoc Reservations: Forward or Backward Steps in Developing Representative Reserve Systems?. Conservation Biology, 1994, 8, 662-668.	4.7	448
10	Biodiversity Conservation Planning Tools: Present Status and Challenges for the Future. Annual Review of Environment and Resources, 2006, 31, 123-159.	13.4	427
11	A social–ecological approach to conservation planning: embedding social considerations. Frontiers in Ecology and the Environment, 2013, 11, 194-202.	4.0	419
12	Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18278-18285.	7.1	408
13	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	5.6	398
14	A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation, 1997, 80, 83-97.	4.1	391
15	Pelagic protected areas: the missing dimension in ocean conservation. Trends in Ecology and Evolution, 2009, 24, 360-369.	8.7	357
16	A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112, 191-216.	4.1	319
17	Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs, 2009, 28, 339-351.	2.2	314
18	Formulating conservation targets for biodiversity pattern and process in the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112, 99-127.	4.1	297

#	Article	IF	CITATIONS
19	Representing biodiversity: Data and procedures for identifying priority areas for conservation. Journal of Biosciences, 2002, 27, 309-326.	1.1	294
20	Efficiency in conservation evaluation: Scoring versus iterative approaches. Biological Conservation, 1989, 50, 199-218.	4.1	292
21	Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 480-504.	2.0	280
22	Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation, 1997, 80, 207-219.	4.1	274
23	Optimality in reserve selection algorithms: When does it matter and how much?. Biological Conservation, 1996, 76, 259-267.	4.1	258
24	A new predictor of the irreplaceability of areas for achieving a conservation goal, its application to real-world planning, and a research agenda for further refinement. Biological Conservation, 2000, 93, 303-325.	4.1	252
25	Measuring and Incorporating Vulnerability into Conservation Planning. Environmental Management, 2005, 35, 527-543.	2.7	246
26	Approaches to landscape- and seascape-scale conservation planning: convergence, contrasts and challenges. Oryx, 2009, 43, 464.	1.0	229
27	Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation, 2010, 143, 565-575.	4.1	220
28	Coverage Provided by the Global Protected-Area System: Is It Enough?. BioScience, 2004, 54, 1081.	4.9	210
29	Policy-driven versus Evidence-based Conservation: A Review of Political Targets and Biological Needs. BioScience, 2005, 55, 989.	4.9	208
30	Designing Marine Reserves for Fisheries Management, Biodiversity Conservation, and Climate Change Adaptation. Coastal Management, 2014, 42, 143-159.	2.0	201
31	Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology, 2015, 21, 48-61.	9.5	201
32	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. Conservation Biology, 2015, 29, 618-629.	4.7	188
33	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	5.7	182
34	Integrated Land-Sea Conservation Planning: The Missing Links. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 381-409.	8.3	181
35	Using abiotic data for conservation assessments over extensive regions: quantitative methods applied across New South Wales, Australia. Biological Conservation, 2000, 96, 55-82.	4.1	165
36	Integrating connectivity and climate change into marine conservation planning. Biological Conservation, 2014, 170, 207-221.	4.1	162

#	Article	IF	CITATIONS
37	Vulnerability of cloud forest reserves in Mexico to climate change. Nature Climate Change, 2012, 2, 448-452.	18.8	161
38	How well protected are the forests of north-eastern New South Wales? — Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing. Forest Ecology and Management, 1996, 85, 311-333.	3.2	159
39	Hitting the target and missing the point: targetâ€based conservation planning in context. Conservation Letters, 2009, 2, 4-11.	5.7	155
40	Opportunity costs: Who really pays for conservation?. Biological Conservation, 2010, 143, 439-448.	4.1	151
41	Poverty and protected areas: An evaluation of a marine integrated conservation and development project in Indonesia. Global Environmental Change, 2014, 26, 98-107.	7.8	148
42	A new approach for selecting fully representative reserve networks: addressing efficiency, reserve design and land suitability with an iterative analysis. Biological Conservation, 1992, 62, 115-125.	4.1	146
43	Conservation Planning and Biodiversity: Assembling the Best Data for the Job. Conservation Biology, 2004, 18, 1677-1681.	4.7	144
44	Opportunism, Threats, and the Evolution of Systematic Conservation Planning. Conservation Biology, 2008, 22, 1340-1345.	4.7	142
45	Scheduling conservation action in production landscapes: priority areas in western New South Wales defined by irreplaceability and vulnerability to vegetation loss. Biological Conservation, 2001, 100, 355-376.	4.1	140
46	Decision Support Frameworks and Tools for Conservation. Conservation Letters, 2018, 11, e12385.	5.7	139
47	Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biological Conservation, 2003, 112, 45-62.	4.1	136
48	Rapid plant diversification: Planning for an evolutionary future. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5452-5457.	7.1	135
49	Making parks make a difference: poor alignment of policy, planning and management with protected-area impact, and ways forward. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140280.	4.0	133
50	Application of a numerical algorithm to the selection of reserves in semi-arid New South Wales. Biological Conservation, 1989, 50, 263-278.	4.1	132
51	Identifying spatial components of ecological and evolutionary processes for regional conservation planning in the Cape Floristic Region, South Africa. Diversity and Distributions, 2003, 9, 191-210.	4.1	130
52	Diminishing return on investment for biodiversity data in conservation planning. Conservation Letters, 2008, 1, 190-198.	5.7	128
53	Mammals of particular conservation concern in the Western Division of New South Wales. Biological Conservation, 1993, 65, 219-248.	4.1	127
54	Effectiveness of protected areas in north-eastern New South Wales: recent trends in six measures. Biological Conservation, 2002, 106, 57-69.	4.1	127

#	Article	IF	CITATIONS
55	The expert or the algorithm?—comparison of priority conservation areas in the Cape Floristic Region identified by park managers and reserve selection software. Biological Conservation, 2003, 112, 147-167.	4.1	126
56	A new method for conservation planning for the persistence of multiple species. Ecology Letters, 2006, 9, 1049-1060.	6.4	126
57	Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation. PLoS ONE, 2010, 5, e11430.	2.5	125
58	Reserve Selection in a Species-Rich and Fragmented Landscape on the Agulhas Plain, South Africa. Seleccion de Reservas en un Paisaje Fragmentado Rico en Especies de la Planicie Agulhas, Sudafrica. Conservation Biology, 1997, 11, 1101-1116.	4.7	123
59	Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. Journal of Experimental Marine Biology and Ecology, 2011, 408, 21-31.	1.5	113
60	Systematic Conservation Planning: A Better Recipe for Managing the High Seas for Biodiversity Conservation and Sustainable Use. Conservation Letters, 2014, 7, 41-54.	5.7	110
61	Tree species compositional change and conservation implications in the whiteâ€water flooded forests of the Brazilian Amazon. Journal of Biogeography, 2012, 39, 869-883.	3.0	109
62	Linking regional planning and local action: Towards using social network analysis in systematic conservation planning. Biological Conservation, 2014, 169, 6-13.	4.1	109
63	Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2693-2702.	4.0	107
64	Management options for river conservation planning: condition and conservation re-visited. Freshwater Biology, 2007, 52, 918-938.	2.4	105
65	The effectiveness and evaluation of conservation planning. Conservation Letters, 2012, 5, 407-420.	5.7	103
66	ls maximizing protection the same as minimizing loss? Efficiency and retention as alternative measures of the effectiveness of proposed reserves. Ecology Letters, 2004, 7, 1035-1046.	6.4	102
67	The plan of the day: Managing the dynamic transition from regional conservation designs to local conservation actions. Biological Conservation, 2013, 166, 155-169.	4.1	102
68	Persistence and vulnerability: Retaining biodiversity in the landscape and in protected areas. Journal of Biosciences, 2002, 27, 361-384.	1.1	100
69	Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biological Conservation, 2003, 112, 169-190.	4.1	100
70	A mismatch of scales: challenges in planning for implementation of marine protected areas in the Coral Triangle. Conservation Letters, 2010, 3, 291-303.	5.7	100
71	Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140270.	4.0	100
72	Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs. Ecography, 2016, 39, 649-664.	4.5	97

#	Article	IF	CITATIONS
73	Estimating the costs of conserving a biodiversity hotspot: a case-study of the Cape Floristic Region, South Africa. Biological Conservation, 2003, 112, 275-290.	4.1	93
74	Biologically representative and wellâ€connected marine reserves enhance biodiversity persistence in conservation planning. Conservation Letters, 2018, 11, e12439.	5.7	91
75	Protecting plants from elephants: botanical reserve scenarios within the Addo Elephant National Park, South Africa. Biological Conservation, 2001, 102, 191-203.	4.1	89
76	Species distributions, surrogacy, and important conservation regions in Canada. Ecology Letters, 2004, 7, 374-379.	6.4	88
77	Size of selection units for future reserves and its influence on actual vs targeted representation of features: a case study in western New South Wales. Biological Conservation, 1998, 85, 305-319.	4.1	86
78	Finite conservation funds mean triage is unavoidable. Trends in Ecology and Evolution, 2009, 24, 183-184.	8.7	86
79	The residual nature of protected areas in Brazil. Biological Conservation, 2019, 233, 152-161.	4.1	85
80	Marine protected area networks in the Philippines: Trends and challenges for establishment and governance. Ocean and Coastal Management, 2012, 64, 15-26.	4.4	79
81	Making decisions to conserve species under climate change. Climatic Change, 2013, 119, 239-246.	3.6	77
82	Conservation planning with irreplaceability: does the method matter?. Biodiversity and Conservation, 2007, 16, 245-258.	2.6	76
83	Conservation planning with dynamic threats: The role of spatial design and priority setting for species' persistence. Biological Conservation, 2010, 143, 756-767.	4.1	75
84	A New Way to Measure the World's Protected Area Coverage. PLoS ONE, 2011, 6, e24707.	2.5	74
85	From displacement activities to evidence-informed decisions in conservation. Biological Conservation, 2017, 212, 337-348.	4.1	73
86	LAND SYSTEMS AS SURROGATES FOR BIODIVERSITY IN CONSERVATION PLANNING. , 2004, 14, 485-503.		72
87	Incorporating ontogenetic dispersal, ecological processes and conservation zoning into reserve design. Biological Conservation, 2010, 143, 457-470.	4.1	71
88	Sensitivity of Systematic Reserve Selection to Decisions about Scale, Biological Data, and Targets: Case Study from Southern British Columbia. Conservation Biology, 2004, 18, 655-666.	4.7	70
89	The Impact of Systematic Conservation Planning. Annual Review of Environment and Resources, 2017, 42, 677-697.	13.4	70
90	Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater environments. Marine and Freshwater Research, 2011, 62, 1062.	1.3	67

#	Article	IF	CITATIONS
91	Effectiveness of using vascular plants to select reserves for bryophytes and lichens. Biological Conservation, 2000, 96, 371-378.	4.1	64
92	A novel approach to model exposure of coastal-marine ecosystems to riverine flood plumes based on remote sensing techniques. Journal of Environmental Management, 2013, 119, 194-207.	7.8	64
93	Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx, 2016, 50, 18-26.	1.0	64
94	Incorporating geodiversity into conservation decisions. Conservation Biology, 2015, 29, 692-701.	4.7	63
95	Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning. PLoS ONE, 2011, 6, e16552.	2.5	61
96	Irreplaceability of river networks: towards catchmentâ€based conservation planning. Journal of Applied Ecology, 2008, 45, 1486-1495.	4.0	59
97	Simulating the effects of using different types of species distribution data in reserve selection. Biological Conservation, 2010, 143, 426-438.	4.1	59
98	Integrated conservation and development: evaluating a community-based marine protected area project for equality of socioeconomic impacts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140277.	4.0	59
99	Promise and problems for estimating management costs of marine protected areas. Conservation Letters, 2011, 4, 241-252.	5.7	58
100	Planning Across Freshwater and Terrestrial Realms: Cobenefits and Tradeoffs Between Conservation Actions. Conservation Letters, 2014, 7, 425-440.	5.7	58
101	Research advances and gaps in marine planning: towards a global database in systematic conservation planning. Biological Conservation, 2018, 227, 369-382.	4.1	58
102	A systematic approach for prioritizing multiple management actions for invasive species. Biological Invasions, 2011, 13, 1241-1253.	2.4	57
103	Effects of Human Population Density and Proximity to Markets on Coral Reef Fishes Vulnerable to Extinction by Fishing. Conservation Biology, 2013, 27, 443-452.	4.7	57
104	Designing connected marine reserves in the face of global warming. Global Change Biology, 2018, 24, e671-e691.	9.5	56
105	Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biological Conservation, 2015, 181, 54-63.	4.1	54
106	Change the IUCN Protected Area Categories to Reflect Biodiversity Outcomes. PLoS Biology, 2008, 6, e66.	5.6	53
107	Better integration of sectoral planning and management approaches for the interlinked ecology of the open oceans. Marine Policy, 2014, 49, 127-136.	3.2	53
108	Improving social acceptability of marine protected area networks: A method for estimating opportunity costs to multiple gear types in both fished and currently unfished areas. Biological Conservation, 2011, 144, 350-361.	4.1	51

#	Article	IF	CITATIONS
109	Effects of data characteristics on the results of reserve selection algorithms. Journal of Biogeography, 1999, 26, 179-191.	3.0	49
110	Critical research needs for managing coral reef marine protected areas: Perspectives of academics and managers. Journal of Environmental Management, 2013, 114, 84-91.	7.8	49
111	Marine conservation finance: The need for and scope of an emerging field. Ocean and Coastal Management, 2015, 114, 116-128.	4.4	48
112	The mismeasure of conservation. Trends in Ecology and Evolution, 2021, 36, 808-821.	8.7	47
113	Efficient and equitable design of marine protected areas in Fiji through inclusion of stakeholder-specific objectives in conservation planning. Conservation Biology, 2015, 29, 1378-1389.	4.7	46
114	Reserve Selection Algorithms and the Real World. Conservation Biology, 2001, 15, 275-277.	4.7	46
115	Incorporating Effectiveness of Community-Based Management in a National Marine Gap Analysis for Fiji. Conservation Biology, 2011, 25, 1155-1164.	4.7	45
116	Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances. PLoS ONE, 2015, 10, e0140828.	2.5	45
117	Marine protected areas: Just for show?. Science, 2018, 360, 723-724.	12.6	43
118	Assessing interactions of multiple stressors when data are limited: A Bayesian belief network applied to coral reefs. Global Environmental Change, 2014, 27, 64-72.	7.8	42
119	Beyond the model: expert knowledge improves predictions of species' fates under climate change. Ecological Applications, 2019, 29, e01824.	3.8	42
120	Conservation Objectives and Seaâ€ 5 urface Temperature Anomalies in the Great Barrier Reef. Conservation Biology, 2012, 26, 799-809.	4.7	40
121	A review of selection-based tests of abiotic surrogates for species representation. Conservation Biology, 2015, 29, 668-679.	4.7	40
122	Sampling of land types by protected areas: three measures of effectiveness applied to western New South Wales. Biological Conservation, 2001, 101, 105-117.	4.1	39
123	Representation of natural vegetation in protected areas: capturing the geographic range. Biodiversity and Conservation, 2001, 10, 1297-1301.	2.6	39
124	Evaluating Perceived Benefits of Ecoregional Assessments. Conservation Biology, 2012, 26, 851-861.	4.7	39
125	Understanding Characteristics that Define the Feasibility of Conservation Actions in a Common Pool Marine Resource Governance System. Conservation Letters, 2013, 6, 418-429.	5.7	39
126	Continentalâ€Scale Governance and the Hastening of Loss of Australia's Biodiversity. Conservation Biology, 2013, 27, 1133-1135.	4.7	39

#	Article	IF	CITATIONS
127	Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Global Ecology and Conservation, 2017, 11, 53-68.	2.1	39
128	Implementation strategies for systematic conservation planning. Ambio, 2019, 48, 139-152.	5.5	39
129	Absence of evidence for the conservation outcomes of systematic conservation planning around the globe: a systematic map. Environmental Evidence, 2018, 7, .	2.7	38
130	Integrating Biosystematic Data into Conservation Planning: Perspectives from Southern Africa's Succulent Karoo. Systematic Biology, 2002, 51, 317-330.	5.6	36
131	Characterizing errors in digital elevation models and estimating the financial costs of accuracy. International Journal of Geographical Information Science, 2010, 24, 1327-1347.	4.8	36
132	Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection. PLoS ONE, 2015, 10, e0145574.	2.5	36
133	Integrated cross-realm planning: A decision-makers' perspective. Biological Conservation, 2015, 191, 799-808.	4.1	36
134	Using Optimal Land-Use Scenarios to Assess Trade-Offs between Conservation, Development, and Social Values. PLoS ONE, 2016, 11, e0158350.	2.5	36
135	A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biological Conservation, 2020, 246, 108595.	4.1	36
136	Estimating Landholders' Probability of Participating in a Stewardship Program, and the Implications for Spatial Conservation Priorities. PLoS ONE, 2014, 9, e97941.	2.5	35
137	A Systematic Review of the Socioeconomic Factors that Influence How Marine Protected Areas Impact on Ecosystems and Livelihoods. Society and Natural Resources, 2019, 32, 4-20.	1.9	35
138	Level of Geographical Subdivision and Its Effects on Assessments of Reserve Coverage: A Review of Regional Studies. Conservation Biology, 1994, 8, 1037-1046.	4.7	34
139	Reserve Coverage and Requirements in Relation to Partitioning and Generalization of Land Classes: Analyses for Western New South Wales. Conservation Biology, 1995, 9, 1506-1517.	4.7	34
140	Selecting zones in a marine park: Early systematic planning improves cost-efficiency; combining habitat and biotic data improves effectiveness. Ocean and Coastal Management, 2012, 59, 1-12.	4.4	34
141	A method for risk analysis across governance systems: a Great Barrier Reef case study. Environmental Research Letters, 2013, 8, 015037.	5.2	34
142	Shortfalls in Conservation Evidence: Moving from Ecological Effects of Interventions to Policy Evaluation. One Earth, 2019, 1, 62-75.	6.8	34
143	Reptiles and amphibians of particular conservation concern in the Western Division of New South Wales: A preliminary review. Biological Conservation, 1994, 69, 41-54.	4.1	33
144	Birds of particular conservation concern in the Western Division of New South Wales. Biological Conservation, 1994, 69, 315-338.	4.1	32

#	Article	IF	CITATIONS
145	Integrating Climate and Ocean Change Vulnerability into Conservation Planning. Coastal Management, 2012, 40, 651-672.	2.0	32
146	Modeling catchment nutrients and sediment loads to inform regional management of water quality in coastal-marine ecosystems: A comparison of two approaches. Journal of Environmental Management, 2014, 146, 164-178.	7.8	31
147	Evaluating management performance of marine protected area networks in the Philippines. Ocean and Coastal Management, 2014, 95, 11-25.	4.4	31
148	Conservation Planning in Forest Landscapes of Fennoscandia and an Approach to the Challenge of Countdown 2010. Conservation Biology, 2007, 21, 1445-1454.	4.7	30
149	A review of wetland inventory and classification in Australia. Plant Ecology, 1995, 118, 81-101.	1.2	29
150	Marine conservation planning in practice: lessons learned from the Gulf of California. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 483-505.	2.0	29
151	Habitat vulnerability in conservation planning—when it matters and how much. Conservation Letters, 2010, 3, 404-414.	5.7	28
152	Impacts of the Moreton Bay Marine Park rezoning on commercial fishermen. Marine Policy, 2013, 39, 248-256.	3.2	28
153	Effective marine offsets for the Great Barrier Reef World Heritage Area. Environmental Science and Policy, 2014, 42, 1-15.	4.9	28
154	Integrating ecology and economics: Illustrating the need to resolve the conflicts of space and time. Ecological Economics, 1997, 23, 135-143.	5.7	27
155	Navigating trade-offs in land-use planning: integrating human well-being into objective setting. Ecology and Society, 2014, 19, .	2.3	26
156	Assessing the Effectiveness of Local Management of Coral Reefs Using Expert Opinion and Spatial Bayesian Modeling. PLoS ONE, 2015, 10, e0135465.	2.5	26
157	Compromises between international habitat conservation guidelines and smallâ€scale fisheries in Pacific island countries. Conservation Letters, 2013, 6, 46-57.	5.7	25
158	Adaptive management of marine mega-fauna in a changing climate. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 209-224.	2.1	24
159	Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation. PLoS ONE, 2016, 11, e0164869.	2.5	24
160	Where do national and local conservation actions meet? Simulating the expansion of ad hoc and systematic approaches to conservation into the future in Fiji. Conservation Letters, 2012, 5, 387-398.	5.7	23
161	When the suit does not fit biodiversity: Loose surrogates compromise the achievement of conservation goals. Biological Conservation, 2013, 159, 197-205.	4.1	23
162	Enhancing the Value and Validity of EIA: Serious Science to Protect Australia's Great Barrier Reef. Conservation Letters, 2016, 9, 377-383.	5.7	23

#	Article	IF	CITATIONS
163	Coarse-filter surrogates do not represent freshwater fish diversity at a regional scale in Queensland, Australia. Biological Conservation, 2011, 144, 2499-2511.	4.1	22
164	Estimating land and conservation management costs: The first step in designing a stewardship program for the Northern Territory. Biological Conservation, 2012, 148, 44-53.	4.1	22
165	Benefits and Challenges of Scaling Up Expansion of Marine Protected Area Networks in the Verde Island Passage, Central Philippines. PLoS ONE, 2015, 10, e0135789.	2.5	22
166	Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs. Diversity, 2018, 10, 26.	1.7	22
167	Factors influencing incidental representation of previously unknown conservation features in marine protected areas. Conservation Biology, 2016, 30, 154-165.	4.7	21
168	Consequences of information suppression in ecological and conservation sciences. Conservation Letters, 2021, 14, e12757.	5.7	21
169	Pelagic MPAs: The devil you know. Trends in Ecology and Evolution, 2010, 25, 63-64.	8.7	20
170	Global opportunities and challenges for Shark Large Marine Protected Areas. Biological Conservation, 2019, 234, 107-115.	4.1	20
171	Formulating conservation targets for a gap analysis of endemic lizards in a biodiversity hotspot. Biological Conservation, 2014, 180, 1-10.	4.1	19
172	Extinction debt from climate change for frogs in the wet tropics. Biology Letters, 2016, 12, 20160236.	2.3	19
173	Nature Conservation in Rangelands: Lessons From Research on Reserve Selection in New South Wales Rangeland Journal, 1992, 14, 214.	0.9	19
174	Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere, 2017, 8, e01822.	2.2	18
175	The context dependence of frontier versus wilderness conservation priorities. Conservation Letters, 2019, 12, e12632.	5.7	18
176	Forecasting conservation impact to pinpoint spatial priorities in the Brazilian Cerrado. Biological Conservation, 2019, 240, 108283.	4.1	18
177	Strategies in scheduling marine protected area establishment in a network system. Ecological Applications, 2019, 29, e01820.	3.8	18
178	Evaluating the impact of future actions in minimizing vegetation loss from land conversion in the Brazilian Cerrado under climate change. Biodiversity and Conservation, 2020, 29, 1701-1722.	2.6	18
179	Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns. PLoS ONE, 2016, 11, e0154272.	2.5	17
180	Ecological and socioeconomic impacts of marine protected areas in the South Pacific: assessing the evidence base. Biodiversity and Conservation, 2020, 29, 349-380.	2.6	17

#	Article	IF	CITATIONS
181	Residual marine protected areas five years on: Are we still favouring ease of establishment over need for protection?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1758-1764.	2.0	17
182	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	4.0	16
183	How Much Does it Cost to Expand a Protected Area System? Some Critical Determining Factors and Ranges of Costs for Queensland. PLoS ONE, 2011, 6, e25447.	2.5	16
184	Scores and score classes for evaluation criteria: A comparison based on the cost of reserving all natural features. Biological Conservation, 1991, 56, 281-294.	4.1	15
185	Predicting impact to assess the efficacy of communityâ€based marine reserve design. Conservation Letters, 2019, 12, e12602.	5.7	15
186	Can we determine conservation priorities without clear objectives?. Biological Conservation, 2010, 143, 2-4.	4.1	14
187	Ten things to get right for marine conservation planning in the Coral Triangle. F1000Research, 2014, 3, 91.	1.6	12
188	Incentivizing coâ€management for impact: mechanisms driving the successful national expansion of Tonga's Special Management Area program. Conservation Letters, 2020, 13, e12742.	5.7	12
189	What is the extent and distribution of evidence on effectiveness of systematic conservation planning around the globe? A systematic map protocol. Environmental Evidence, 2016, 5, .	2.7	11
190	Purpose, policy, and practice: Intent and reality for on-ground management and outcomes of the Great Barrier Reef Marine Park. Marine Policy, 2017, 81, 301-311.	3.2	11
191	The Importance of Fishing Grounds as Perceived by Local Communities Can be Undervalued by Measures of Socioeconomic Cost Used in Conservation Planning. Conservation Letters, 2018, 11, e12352.	5.7	11
192	Advances in Applied Biodiversity Science: Global Gap Analysis: towards a representative network of protected areas. , 2003, , 6-98.		10
193	Influence of Governance Context on the Management Performance of Marine Protected Area Networks. Coastal Management, 2016, 44, 71-91.	2.0	10
194	Estimating realistic costs for strategic management planning of invasive species eradications on islands. Biological Invasions, 2018, 20, 1287-1305.	2.4	10
195	Investigating Stakeholder Perceptions of Fish Decline: Making Sense of Multiple Mental Models. Sustainability, 2018, 10, 1222.	3.2	10
196	Costs are not necessarily correlated with threats in conservation landscapes. Conservation Letters, 2019, 12, e12663.	5.7	10
197	Estimating counterfactuals for evaluation of ecological and conservation impact: an introduction to matching methods. Biological Reviews, 2021, 96, 1186-1204.	10.4	10
198	From the Mountains to the Sea: Where Is Freshwater Conservation in the SCB Agenda?. Conservation Biology, 2008, 22, 505-507.	4.7	9

#	Article	IF	CITATIONS
199	Reptile species persistence under climate change and direct human threats in north-western Argentina. Environmental Conservation, 2018, 45, 83-89.	1.3	9
200	The relative conservation impact of strategies that prioritize biodiversity representation, threats, and protection costs. Conservation Science and Practice, 2020, 2, e221.	2.0	9
201	<i>Special Section: Systematic Conservation Planning in the European Landscape: Conflicts, Environmental Changes, and the Challenge of Countdown 2010</i> . Conservation Biology, 2007, 21, 1404-1405.	4.7	8
202	Uncertainties around the Implementation of a Clearing-Control Policy in a Unique Catchment in Northern Australia: Exploring Equity Issues and Balancing Competing Objectives. PLoS ONE, 2014, 9, e96479.	2.5	8
203	Community management yields positive impacts for coastal fisheries resources and biodiversity conservation. Conservation Letters, 2020, 13, e12755.	5.7	8
204	What is Missing in Biosphere Reserves Accountability?. Natureza A Conservacao, 2011, 9, 160-178.	2.5	8
205	Integrating dynamic processes into waterfowl conservation prioritization tools. Diversity and Distributions, 2021, 27, 585-601.	4.1	8
206	Novel operations research methods for efficiently determining irreplaceable sites for conservation. Environmental Modeling and Assessment, 2007, 12, 91-103.	2.2	7
207	Island arks: the need for an Australian national island biosecurity initiative. Ecological Management and Restoration, 2010, 11, 166-167.	1.5	7
208	Regimes of chlorophyllâ€a in the Coral Sea: implications for evaluating adequacy of marine protected areas. Ecography, 2016, 39, 289-304.	4.5	7
209	Avoiding Implementation Failure in Catchment Landscapes: A Case Study in Governance of the Great Barrier Reef. Environmental Management, 2018, 62, 70-81.	2.7	7
210	Impact evaluation and conservation outcomes in marine protected areas: A case study of the Great Barrier Reef Marine Park. Biological Conservation, 2019, 238, 108185.	4.1	7
211	Representation does not necessarily reduce threats to biodiversity: Australia's Commonwealth marine protected area system, 2012–2018. Biological Conservation, 2020, 252, 108813.	4.1	7
212	Fine-grained data and models of protected-area management costs reveal cryptic effects of budget shortfalls. Biological Conservation, 2022, 272, 109589.	4.1	7
213	Tongan socio-environmental spatial layers for marine ecosystem management. Pacific Conservation Biology, 2021, 27, 86.	1.0	6
214	A synthesis of knowledge about motives for participation in perpetual conservation easements. Conservation Science and Practice, 2021, 3, e323.	2.0	6
215	Local and expert knowledge improve conservation assessment of rare and iconic Fijian tree species. Pacific Conservation Biology, 2015, 21, 214.	1.0	5
216	Modelling the spread and control of cherry guava on Lord Howe Island. Biological Conservation, 2018, 227, 252-258.	4.1	5

#	Article	IF	CITATIONS
217	Identifying the strengths and weaknesses of conservation planning at different scales: the Coral Triangle as a case study. Ecology and Society, 2019, 24, .	2.3	5
218	Mitigating negative livelihood impacts of no-take MPAs on small-scale fishers. Biological Conservation, 2020, 245, 108554.	4.1	5
219	Voting power and target-based site prioritization. Biological Conservation, 2010, 143, 1989-1997.	4.1	4
220	Australian marine protected areas. , 2014, , 582-599.		4
221	The plans they are aâ€changin': More frequent iterative adjustment of regional priorities in the transition to local actions can benefit implementation. Diversity and Distributions, 2018, 24, 48-57.	4.1	4
222	An Info-Gap Model to Examine the Robustness of Cost-Efficient Budget Allocations. , 2011, , .		3
223	Terrestrial protected areas of Australia. , 2014, , 560-581.		3
224	Methods for identifying spatially referenced conservation needs and opportunities. Biological Conservation, 2021, 260, 109138.	4.1	3
225	Response from Holdrege and Ebach: What about Taxa?. BioScience, 2006, 56, 94.	4.9	2
226	Scalar capital as ingredient of success in conservation governance: evidence from Melanesia. Global Environmental Change, 2020, 62, 102057.	7.8	2
227	A Genetic Algorithm Solver for Pest Management Control in Island Systems. Lecture Notes in Computer Science, 2015, , 273-285.	1.3	2
228	Response from Svancara and Colleagues. BioScience, 2006, 56, 96.	4.9	1
229	Predicting and managing plant invasions on offshore islands. Conservation Science and Practice, 2021, 3, e192.	2.0	1