Philippe Brabet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492562/publications.pdf Version: 2024-02-01

DHILIDDE ROARET

#	Article	IF	CITATIONS
1	Formulation and Evaluation of SNEDDS Loaded with Original Lipophenol for the Oral Route to Prevent Dry AMD and Stragardt's Disease. Pharmaceutics, 2022, 14, 1029.	4.5	6
2	New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radical Biology and Medicine, 2021, 162, 367-382.	2.9	14
3	Endogenous Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Plays a Protective Effect Against Noise-Induced Hearing Loss. Frontiers in Cellular Neuroscience, 2021, 15, 658990.	3.7	2
4	Retinitis Punctata Albescens and RLBP1-Allied Phenotypes. Ophthalmology Science, 2021, 1, 100052.	2.5	1
5	Advanced late-onset retinitis pigmentosa with dominant-acting D477G RPE65 mutation is responsive to oral synthetic retinoid therapy. BMJ Open Ophthalmology, 2020, 5, e000462.	1.6	11
6	Isopropylâ€phloroglucinolâ€DHA protects outer retinal cells against lethal dose of allâ€ <i>trans</i> â€retinal. Journal of Cellular and Molecular Medicine, 2020, 24, 5057-5069.	3.6	11
7	Preclinical pharmacology of a lipophenol in a mouse model of light-induced retinopathy. Experimental and Molecular Medicine, 2020, 52, 1090-1101.	7.7	8
8	Bis-allylic Deuterated DHA Alleviates Oxidative Stress in Retinal Epithelial Cells. Antioxidants, 2019, 8, 447.	5.1	8
9	Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds. Human Genetics, 2019, 138, 441-453.	3.8	29
10	New Lipophenol Antioxidants Reduce Oxidative Damage in Retina Pigment Epithelial Cells. Antioxidants, 2018, 7, 197.	5.1	29
11	Physiological and pathological roles of FATP-mediated lipid droplets in Drosophila and mice retina. PLoS Genetics, 2018, 14, e1007627.	3.5	38
12	Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PLoS ONE, 2017, 12, e0180148.	2.5	6
13	Phloroglucinol protects retinal pigment epithelium and photoreceptor against allâ€ <i>trans</i> â€retinal–induced toxicity and inhibits A2E formation. Journal of Cellular and Molecular Medicine, 2016, 20, 1651-1663.	3.6	14
14	Synthesis and Evaluation of Polyunsaturated Fatty Acid–Phenol Conjugates as Anti arbonyl‧tress Lipophenols. European Journal of Organic Chemistry, 2014, 2014, 4548-4561.	2.4	27
15	A Truncated Form of Rod Photoreceptor PDE6 β-Subunit Causes Autosomal Dominant Congenital Stationary Night Blindness by Interfering with the Inhibitory Activity of the γ-Subunit. PLoS ONE, 2014, 9, e95768.	2.5	24
16	Mutations in IMPG1 Cause Vitelliform Macular Dystrophies. American Journal of Human Genetics, 2013, 93, 571-578.	6.2	71
17	The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain, 2012, 135, 3599-3613.	7.6	94
18	Fatp1 Deficiency Affects Retinal Light Response and Dark Adaptation, and Induces Age-Related Alterations. PLoS ONE, 2012, 7, e50231.	2.5	15

PHILIPPE BRABET

#	Article	IF	CITATIONS
19	Simple and Efficient: Validation of a Cotton Wick Electrode for Animal Electroretinography. Ophthalmic Research, 2011, 45, 174-179.	1.9	9
20	Screening genes of the visual cycle <i>RGR</i> , <i>RBP1</i> and <i>RBP3</i> identifies rare sequence variations. Ophthalmic Genetics, 2010, 31, 200-204.	1.2	3
21	FATP1 Inhibits 11-cis Retinol Formation via Interaction with the Visual Cycle Retinoid Isomerase RPE65 and Lecithin:Retinol Acyltransferase. Journal of Biological Chemistry, 2010, 285, 18759-18768.	3.4	13
22	Pituitary Adenylate Cyclase-Activating Polypeptide Inhibits Food Intake in Mice Through Activation of the Hypothalamic Melanocortin System. Neuropsychopharmacology, 2009, 34, 424-435.	5.4	91
23	Granule Cell Survival is Deficient in PAC1â^'/â^' Mutant Cerebellum. Journal of Molecular Neuroscience, 2008, 36, 38-44.	2.3	18
24	Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R2050-R2058.	1.8	45
25	Screening Genes of the Retinoid Metabolism: Novel LRAT Mutation in Leber Congenital Amaurosis. American Journal of Ophthalmology, 2006, 142, 702-704.	3.3	39
26	Expression of the Opa1 Mitochondrial Protein in Retinal Ganglion Cells: Its Downregulation Causes Aggregation of the Mitochondrial Network. , 2005, 46, 4288.		68
27	VPAC2 Receptors Mediate Vasoactive Intestinal Peptide-Induced Neuroprotection against Neonatal Excitotoxic Brain Lesions in Mice. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 745-752.	2.5	41
28	Deafness and Cochlear Fibrocyte Alterations in Mice Deficient for the Inner Ear Protein Otospiralin. Molecular and Cellular Biology, 2005, 25, 847-853.	2.3	59
29	Caspase Inhibitors, but not c-Jun NH2-Terminal Kinase Inhibitor Treatment, Prevent Cisplatin-Induced Hearing Loss. Cancer Research, 2004, 64, 9217-9224.	0.9	188
30	Altered Social Behavior in Pituitary Adenylate Cyclase-Activating Polypeptide Type I Receptor-Deficient Mice. Journal of Neuroscience, 2004, 24, 8786-8795.	3.6	74
31	Up-regulation of the PACAP type-1 receptor (PAC1) promoter by neurotrophins in rat PC12 cells and mouse cerebellar granule cells via the Ras/mitogen-activated protein kinase cascade. Journal of Neurochemistry, 2004, 82, 1199-1207.	3.9	31
32	Anti-inflammatory role in septic shock of pituitary adenylate cyclase-activating polypeptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1053-1058.	7.1	114
33	Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Mediating Insulin Secretion in Rodent Pancreatic Islets Are Coupled to Adenylate Cyclase But Not to PLC. Endocrinology, 2002, 143, 1253-1259.	2.8	34
34	Transcription of the mouse PAC1 receptor gene: cell-specific expression and regulation by Zac1. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 157-162.	2.4	21
35	Dissociation between Light-Induced Phase Shift of the Circadian Rhythm and Clock Gene Expression in Mice Lacking the Pituitary Adenylate Cyclase Activating Polypeptide Type 1 Receptor. Journal of Neuroscience, 2001, 21, 4883-4890.	3.6	154
36	Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks. Molecular Brain Research, 2000, 84, 79-89.	2.3	54

PHILIPPE BRABET

#	Article	IF	CITATIONS
37	PAC1 receptor–deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. Journal of Clinical Investigation, 2000, 105, 1307-1315.	8.2	175
38	Induction of Type I PACAP Receptor Expression by the New Zinc Finger Protein Zac1 and p53. Annals of the New York Academy of Sciences, 1998, 865, 49-58.	3.8	24
39	Localization of the Human Pituitary Adenylate Cyclase-Activating Polypeptide Receptor (PACAP1-R) Gene to 7p15–p14 by Fluorescencein SituHybridization. Genomics, 1996, 38, 100-102.	2.9	11
40	Alternative Splicing in the N-terminal Extracellular Domain of the Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) Receptor Modulates Receptor Selectivity and Relative Potencies of PACAP-27 and PACAP-38 in Phospholipase C Activation. Journal of Biological Chemistry, 1996, 271, 22146-22151.	3.4	205
41	Gi2? protein deficiency: A model for inflammatory bowel disease. Journal of Clinical Immunology, 1995, 15, S101-S105.	3.8	67
42	Ulcerative colitis and adenocarcinoma of the colon in Gαi2-deficient mice. Nature Genetics, 1995, 10, 143-150.	21.4	390
43	Disruption of the Gi2 $\hat{1}$ ± locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Research, 1993, 2, 345-355.	2.4	27
44	Targeting of the Gi2α Gene in es cells with Replacement and Insertion Vectors. Journal of Receptors and Signal Transduction, 1993, 13, 619-637.	1.2	7
45	Neuroblastoma Differentiation Involves the Expression of Two Isoforms of the ?-Subunit of Go. Journal of Neurochemistry, 1990, 54, 1310-1320.	3.9	32
46	Multiple species and isoforms of Bordetella pertussis toxin substrates. Biochemical and Biophysical Research Communications, 1988, 152, 1185-1192.	2.1	19
47	Go, a major brain GTP binding protein in search of a function: purification, immunological and biochemical characteristics. Biochimie, 1987, 69, 339-349	2.6	18