
I Chorkendorff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8492039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing Current Density of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes. ACS Energy Letters, 2022, 7, 36-41.	8.8	45
2	<i>In Situ</i> Analysis of the Facets of Cu-Based Electrocatalysts in Alkaline Media Using Pb Underpotential Deposition. Langmuir, 2022, 38, 1514-1521.	1.6	8
3	Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. Electrochemistry Communications, 2022, 134, 107186.	2.3	18
4	Investigation of Ethylene and Propylene Production from CO ₂ Reduction over Copper Nanocubes in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces, 2022, 14, 7779-7787.	4.0	22
5	The low overpotential regime of acidic water oxidation part I: the importance of O ₂ detection. Energy and Environmental Science, 2022, 15, 1977-1987.	15.6	23
6	The low overpotential regime of acidic water oxidation part II: trends in metal and oxygen stability numbers. Energy and Environmental Science, 2022, 15, 1988-2001.	15.6	35
7	Quantitative Operando Detection of Electro Synthesized Ammonia Using Mass Spectrometry. ChemElectroChem, 2022, 9, .	1.7	9
8	Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7, 55-64.	19.8	108
9	Transients in Electrochemical CO Reduction Explained by Mass Transport of Buffers. ACS Catalysis, 2022, 12, 5155-5161.	5.5	7
10	Local reaction environment for selective electroreduction of carbon monoxide. Energy and Environmental Science, 2022, 15, 2470-2478.	15.6	27
11	A spin promotion effect in catalytic ammonia synthesis. Nature Communications, 2022, 13, 2382.	5.8	38
12	Oxygen-Enhanced Chemical Stability of Lithium-Mediated Electrochemical Ammonia Synthesis. Journal of Physical Chemistry Letters, 2022, 13, 4605-4611.	2.1	18
13	Effects of SiO2-doping on high-surface-area Ru/TiO2 catalysts for the selective CO methanation. Applied Catalysis B: Environmental, 2021, 282, 119483.	10.8	27
14	Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. Journal of Catalysis, 2021, 393, 313-323.	3.1	43
15	CO as a Probe Molecule to Study Surface Adsorbates during Electrochemical Oxidation of Propene. ChemElectroChem, 2021, 8, 250-256.	1.7	9
16	Chemisorbed oxygen or surface oxides steer the selectivity in Pd electrocatalytic propene oxidation observed by <i>operando</i> Pd L-edge X-ray absorption spectroscopy. Catalysis Science and Technology, 2021, 11, 3347-3352.	2.1	6
17	Towards understanding of electrolyte degradation in lithium-mediated non-aqueous electrochemical ammonia synthesis with gas chromatography-mass spectrometry. RSC Advances, 2021, 11, 31487-31498.	1.7	30
18	Is There Anything Better than Pt for HER?. ACS Energy Letters, 2021, 6, 1175-1180.	8.8	304

2

#	Article	IF	CITATIONS
19	Semitransparent Selenium Solar Cells as a Top Cell for Tandem Photovoltaics. Solar Rrl, 2021, 5, 2100111.	3.1	20
20	The Importance of Potential Control for Accurate Studies of Electrochemical CO Reduction. ACS Energy Letters, 2021, 6, 1879-1885.	8.8	20
21	Tracking oxygen atoms in electrochemical CO oxidation – Part I: Oxygen exchange via <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg"><mml:msub><mml:mtext>CO</mml:mtext><mml:mn>2</mml:mn></mml:msub> hvdration. Electrochimica Acta. 2021. 374. 137842.</mml:math 	2.6	6
22	Dynamic Interfacial Reaction Rates from Electrochemistry–Mass Spectrometry. Analytical Chemistry, 2021, 93, 7022-7028.	3.2	5
23	Tracking oxygen atoms in electrochemical CO oxidation - Part II: Lattice oxygen reactivity in oxides of Pt and Ir. Electrochimica Acta, 2021, 374, 137844.	2.6	9
24	Origins of the Instability of Nonprecious Hydrogen Evolution Reaction Catalysts at Open-Circuit Potential. ACS Energy Letters, 2021, 6, 2268-2274.	8.8	44
25	Interaction of CO with Gold in an Electrochemical Environment. Journal of Physical Chemistry C, 2021, 125, 17684-17689.	1.5	7
26	Methods for nitrogen activation by reduction and oxidation. Nature Reviews Methods Primers, 2021, 1, .	11.8	107
27	Selenium Thin-Film Solar Cells with Cadmium Sulfide as a Heterojunction Partner. ACS Applied Energy Materials, 2021, 4, 10697-10702.	2.5	15
28	Copper-indium hydroxides derived electrocatalysts with tunable compositions for electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 63, 278-284.	7.1	38
29	Preparation of high surface area Cuâ€Au bimetallic nanostructured materials by coâ€electrodeposition in a deep eutectic solvent. Electrochimica Acta, 2021, 398, 139309.	2.6	9
30	Electrified methane reforming: Elucidating transient phenomena. Chemical Engineering Journal, 2021, 425, 131509.	6.6	38
31	How to extract adsorption energies, adsorbate–adsorbate interaction parameters and saturation coverages from temperature programmed desorption experiments. Physical Chemistry Chemical Physics, 2021, 23, 24396-24402.	1.3	1
32	Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis, 2021, 11, 12745-12753.	5.5	18
33	Optimized CoNi Nanoparticle Composition for Curie-Temperature-Controlled Induction-Heated Catalysis. ACS Applied Nano Materials, 2021, 4, 11537-11544.	2.4	14
34	Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374, 1593-1597.	6.0	123
35	TaS ₂ Back Contact Improving Oxide-Converted Cu ₂ BaSnS ₄ Solar Cells. ACS Applied Energy Materials, 2020, 3, 1190-1198.	2.5	13
36	X-ray Absorption Spectroscopy Investigation of Platinum–Gadolinium Thin Films with Different Stoichiometry for the Oxygen Reduction Reaction. Catalysts, 2020, 10, 978.	1.6	2

#	Article	IF	CITATIONS
37	Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy and Environmental Science, 2020, 13, 4291-4300.	15.6	124
38	Wireless Photoelectrochemical Water Splitting Using Triple-Junction Solar Cell Protected by TiO2. Cell Reports Physical Science, 2020, 1, 100261.	2.8	11
39	Role of ion-selective membranes in the carbon balance for CO ₂ electroreduction <i>via</i> gas diffusion electrode reactor designs. Chemical Science, 2020, 11, 8854-8861.	3.7	84
40	Anodic molecular hydrogen formation on Ru and Cu electrodes. Catalysis Science and Technology, 2020, 10, 6870-6878.	2.1	15
41	Assessing the defect tolerance of kesterite-inspired solar absorbers. Energy and Environmental Science, 2020, 13, 3489-3503.	15.6	28
42	Acid-Stable Oxides for Oxygen Electrocatalysis. ACS Energy Letters, 2020, 5, 2905-2908.	8.8	90
43	Experimental and First-Principles Spectroscopy of Cu ₂ SrSnS ₄ and Cu ₂ BaSnS ₄ Photoabsorbers. ACS Applied Materials & Interfaces, 2020, 12, 50446-50454.	4.0	13
44	Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. ACS Catalysis, 2020, 10, 6281-6290.	5.5	65
45	Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nature Catalysis, 2020, 3, 516-525.	16.1	166
46	Optimizing Niâ^'Feâ^'Ga alloys into Ni ₂ FeGa for the Hydrogenation of CO ₂ into Methanol. ChemCatChem, 2020, 12, 3265-3273.	1.8	14
47	Parallel Evaluation of the Bil ₃ , BiOI, and Ag ₃ Bil ₆ Layered Photoabsorbers. Chemistry of Materials, 2020, 32, 3385-3395.	3.2	48
48	Fingerprint Voltammograms of Copper Single Crystals under Alkaline Conditions: A Fundamental Mechanistic Analysis. Journal of Physical Chemistry Letters, 2020, 11, 1450-1455.	2.1	38
49	Insights into the carbon balance for CO ₂ electroreduction on Cu using gas diffusion electrode reactor designs. Energy and Environmental Science, 2020, 13, 977-985.	15.6	313
50	The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts. Journal of the Electrochemical Society, 2020, 167, 164501.	1.3	32
51	Porous Metallic Membranes As High-Performance Gas Diffusion Electrodes for CO2 Reduction in a MEA-Type Electrolyzer. ECS Meeting Abstracts, 2020, MA2020-01, 2635-2635.	0.0	0
52	(Keynote) Electrochemical Conversion of Sustainable Energy. ECS Meeting Abstracts, 2020, MA2020-01, 1725-1725.	0.0	0
53	An Investigation of Surface-Functionalized Electrocatalysts for Efficient CO2 Reduction to Multi-Carbon Products. ECS Meeting Abstracts, 2020, MA2020-01, 2620-2620.	0.0	0
54	(Invited) Electrifying Our Fuel and Chemical Production. ECS Meeting Abstracts, 2020, MA2020-01, 1456-1456.	0.0	0

#	Article	IF	CITATIONS
55	(Invited) A Full Carbon Balance Analysis on High Current Density Electrochemical CO2 Reduction Reactors with Cu Catalysts. ECS Meeting Abstracts, 2020, MA2020-01, 1497-1497.	0.0	0
56	Durability Testing of Photoelectrochemical Hydrogen Production under Day/Night Light Cycled Conditions. ChemElectroChem, 2019, 6, 106-109.	1.7	24
57	Analysis of Mass Flows and Membrane Cross-over in CO ₂ Reduction at High Current Densities in an MEA-Type Electrolyzer. ACS Applied Materials & Interfaces, 2019, 11, 41281-41288.	4.0	188
58	On the Possibilities and Considerations of Interfacing Ultraâ€High Vacuum Equipment with an Electrochemical Setup. ChemPhysChem, 2019, 20, 3024-3029.	1.0	7
59	Trace anodic migration of iridium and titanium ions and subsequent cathodic selectivity degradation in acid electrolysis systems. Materials Today Energy, 2019, 14, 100352.	2.5	8
60	Wide Band Gap Cu ₂ SrSnS ₄ Solar Cells from Oxide Precursors. ACS Applied Energy Materials, 2019, 2, 7340-7344.	2.5	23
61	Structure Sensitivity in the Electrocatalytic Reduction of CO ₂ with Gold Catalysts. Angewandte Chemie - International Edition, 2019, 58, 3774-3778.	7.2	106
62	Structure Sensitivity in the Electrocatalytic Reduction of CO2with Gold Catalysts. Angewandte Chemie, 2019, 131, 3814-3818.	1.6	18
63	Sizeâ€Dependence of the Melting Temperature of Individual Au Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800480.	1.2	35
64	Progress and Perspectives of Electrochemical CO ₂ Reduction on Copper in Aqueous Electrolyte. Chemical Reviews, 2019, 119, 7610-7672.	23.0	2,708
65	Considerations for the scaling-up of water splitting catalysts. Nature Energy, 2019, 4, 430-433.	19.8	759
66	Effect of Dissolved Glassware on the Structure-Sensitive Part of the Cu(111) Voltammogram in KOH. ACS Energy Letters, 2019, 4, 1645-1649.	8.8	29
67	A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570, 504-508.	13.7	1,006
68	Evolution of intermetallic GaPd ₂ /SiO ₂ catalyst and optimization for methanol synthesis at ambient pressure. Science and Technology of Advanced Materials, 2019, 20, 521-531.	2.8	9
69	A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques. ACS Catalysis, 2019, 9, 5797-5802.	5.5	97
70	Activity–or Lack Thereof–of RuO ₂ -Based Electrodes in the Electrocatalytic Reduction of CO ₂ . Journal of Physical Chemistry C, 2019, 123, 17765-17773.	1.5	13
71	Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science, 2019, 364, 756-759.	6.0	299
72	Selective CO methanation on isostructural Ru nanocatalysts: The role of support effects. Journal of Catalysis, 2019, 373, 103-115.	3.1	40

#	Article	IF	CITATIONS
73	Shining Light on Sulfide Perovskites: LaYS ₃ Material Properties and Solar Cells. Chemistry of Materials, 2019, 31, 3359-3369.	3.2	32
74	Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium. Energy and Environmental Science, 2019, 12, 1055-1067.	15.6	39
75	Absence of Oxidized Phases in Cu under CO Reduction Conditions. ACS Energy Letters, 2019, 4, 803-804.	8.8	97
76	The Difficulty of Proving Electrochemical Ammonia Synthesis. ACS Energy Letters, 2019, 4, 2986-2988.	8.8	122
77	Supercritical flow synthesis of PtPdFe alloyed nanoparticles with enhanced low-temperature activity and thermal stability for propene oxidation under lean exhaust gas conditions. Catalysis Science and Technology, 2019, 9, 6691-6699.	2.1	4
78	Electrified Methane Reforming: Understanding the Dynamic Interplay. Industrial & Engineering Chemistry Research, 2019, 58, 23380-23388.	1.8	53
79	CO2 Reduction to CO on Au: Facet Dependent Activity and Selectivity. ECS Meeting Abstracts, 2019, , .	0.0	0
80	Isotope-Labeling Studies in Water Oxidation Electrocatalysis. ECS Meeting Abstracts, 2019, , .	0.0	0
81	Decentralized Electrochemical Production of H2O2: A Focus on Catalysis and Single-Atom Catalysts. ECS Meeting Abstracts, 2019, , .	0.0	0
82	Electrochemical Partial Oxidation of Alkenes: Understanding Selectivity and Reaction Mechanisms. ECS Meeting Abstracts, 2019, , .	0.0	0
83	Engineering Ni–Mo–S Nanoparticles for Hydrodesulfurization. Nano Letters, 2018, 18, 3454-3460.	4.5	21
84	Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochimica Acta, 2018, 272, 192-202.	2.6	63
85	Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and â^'Rare-Earth Alloys for Oxygen Reduction. ACS Catalysis, 2018, 8, 2071-2080.	5.5	59
86	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie - International Edition, 2018, 57, 2800-2805.	7.2	72
87	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie, 2018, 130, 2850-2855.	1.6	10
88	Electroreduction of CO on Polycrystalline Copper at Low Overpotentials. ACS Energy Letters, 2018, 3, 634-640.	8.8	73
89	Reduced sintering of mass-selected Au clusters on SiO ₂ by alloying with Ti: an aberration-corrected STEM and computational study. Nanoscale, 2018, 10, 2363-2370.	2.8	14
90	Ambient Pressure Hydrodesulfurization of Refractory Sulfur Compounds in Highly Sensitive μ-Reactor Platform Coupled to a Time-of-Flight Mass Spectrometer. Journal of Physical Chemistry C, 2018, 122, 1699-1705.	1.5	6

#	Article	IF	CITATIONS
91	Corrections to "Intermetallic GaPd ₂ Nanoparticles on SiO ₂ for Low-Pressure CO ₂ Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization― ACS Catalysis, 2018, 8, 938-938.	5.5	1
92	Selective CO Methanation on Highly Active Ru/TiO ₂ Catalysts: Identifying the Physical Origin of the Observed Activation/Deactivation and Loss in Selectivity. ACS Catalysis, 2018, 8, 5399-5414.	5.5	72
93	Toward the Decentralized Electrochemical Production of H ₂ O ₂ : A Focus on the Catalysis. ACS Catalysis, 2018, 8, 4064-4081.	5.5	663
94	Enabling real-time detection of electrochemical desorption phenomena with sub-monolayer sensitivity. Electrochimica Acta, 2018, 268, 520-530.	2.6	53
95	Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts. Chinese Journal of Catalysis, 2018, 39, 16-26.	6.9	11
96	Importance of Surface IrO _{<i>x</i>} in Stabilizing RuO ₂ for Oxygen Evolution. Journal of Physical Chemistry B, 2018, 122, 947-955.	1.2	95
97	Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nature Catalysis, 2018, 1, 820-829.	16.1	344
98	Polycrystalline and Singleâ€Crystal Cu Electrodes: Influence of Experimental Conditions on the Electrochemical Properties in Alkaline Media. Chemistry - A European Journal, 2018, 24, 17743-17755.	1.7	46
99	Frontispiece: Active-Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence X-Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, .	1.7	0
100	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	1.7	17
101	Trends in Activity and Dissolution on RuO ₂ under Oxygen Evolution Conditions: Particles versus Well-Defined Extended Surfaces. ACS Energy Letters, 2018, 3, 2045-2051.	8.8	144
102	Deposition of methylammonium iodide <i>via</i> evaporation – combined kinetic and mass spectrometric study. RSC Advances, 2018, 8, 29899-29908.	1.7	41
103	<i>Operando</i> XAS Study of the Surface Oxidation State on a Monolayer IrO _{<i>x</i>} on RuO _{<i>x</i>} and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media. Journal of Physical Chemistry B, 2018, 122, 878-887.	1.2	59
104	In-Situ XRD during Electrochemical CO Reduction on Cu. ECS Meeting Abstracts, 2018, , .	0.0	0
105	Studies of the Oxygen Reduction Reaction of Pt Single Crystals Alloys in Alkaline Media. ECS Meeting Abstracts, 2018, , .	0.0	0
106	(Invited) Electrochemical Ammonia Synthesis - Facts or Dreams?. ECS Meeting Abstracts, 2018, , .	0.0	0
107	Towards Identifying the Active Sites on Oriented Ruthenium Dioxide Surfaces in Catalyzing Oxygen Evolution. ECS Meeting Abstracts, 2018, , .	0.0	0
108	Electrooxidation of Propylene to Acrolein. ECS Meeting Abstracts, 2018, , .	0.0	0

#	Article	IF	CITATIONS
109	Large Band Gap Photoabsorbers for Tandem Water Splitting Devices. ECS Meeting Abstracts, 2018, MA2018-01, 1912-1912.	0.0	0
110	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, .	6.0	7,837
111	Operando investigation of Au-MnOx thin films with improved activity for the oxygen evolution reaction. Electrochimica Acta, 2017, 230, 22-28.	2.6	39
112	Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 2017, 46, 1933-1954.	18.7	427
113	New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals. Electrocatalysis, 2017, 8, 594-604.	1.5	23
114	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8711-8715.	7.2	16
115	Deactivating Carbon Formation on a Ni/Al ₂ O ₃ Catalyst under Methanation Conditions. Journal of Physical Chemistry C, 2017, 121, 15556-15564.	1.5	25
116	High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt ₃ Y. Advanced Materials Interfaces, 2017, 4, 1700311.	1.9	39
117	Bottomâ€Up Design of a Copper–Ruthenium Nanoparticulate Catalyst for Lowâ€Temperature Ammonia Oxidation. Angewandte Chemie, 2017, 129, 8837-8841.	1.6	9
118	Quantification of liquid products from the electroreduction of CO2 and CO using static headspace-gas chromatography and nuclear magnetic resonance spectroscopy. Catalysis Today, 2017, 288, 54-62.	2.2	16
119	Electrochemical Ammonia Synthesis—The Selectivity Challenge. ACS Catalysis, 2017, 7, 706-709.	5.5	689
120	Comment on "Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalystsâ€. Science, 2017, 357, .	6.0	69
121	Towards identifying the active sites on RuO ₂ (110) in catalyzing oxygen evolution. Energy and Environmental Science, 2017, 10, 2626-2637.	15.6	278
122	Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS ₃ . Energy and Environmental Science, 2017, 10, 2579-2593.	15.6	91
123	Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction: fabrication and rotating disk electrode measurements. Electrochimica Acta, 2017, 247, 708-721.	2.6	39
124	Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction. Catalysis Today, 2017, 290, 59-64.	2.2	35
125	l <i>>s</i> 2 <i>p</i> resonant inelastic X-ray scattering combined dipole and quadrupole analysis method. Journal of Synchrotron Radiation, 2017, 24, 296-301.	1.0	8
126	Toward sustainable fuel cells. Science, 2016, 354, 1378-1379.	6.0	384

#	Article	IF	CITATIONS
127	Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352, 73-76.	6.0	783
128	Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process. ACS Applied Materials & Interfaces, 2016, 8, 14301-14306.	4.0	23
129	Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science, 2016, 352, 969-974.	6.0	566
130	Revealing the Formation of Copper Nanoparticles from a Homogeneous Solid Precursor by Electron Microscopy. Journal of the American Chemical Society, 2016, 138, 3433-3442.	6.6	50
131	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie, 2016, 128, 1472-1476.	1.6	39
132	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.	7.2	166
133	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. Journal of Catalysis, 2016, 343, 215-231.	3.1	115
134	Backâ€Illuminated Siâ€Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer. ChemElectroChem, 2016, 3, 1517-1517.	1.7	7
135	Protected, back-illuminated silicon photocathodes or photoanodes for water splitting tandem stacks (Conference Presentation). , 2016, , .		0
136	Investigating the coverage dependent behaviour of CO on Gd/Pt(111). Physical Chemistry Chemical Physics, 2016, 18, 29732-29739.	1.3	5
137	Probing the nanoscale structure of the catalytically active overlayer on Pt alloys with rare earths. Nano Energy, 2016, 29, 249-260.	8.2	49
138	H ₂ /D ₂ exchange reaction on mono-disperse Pt clusters: enhanced activity from minute O ₂ concentrations. Catalysis Science and Technology, 2016, 6, 6893-6900.	2.1	9
139	Backâ€Illuminated Siâ€Based Photoanode with Nickel Cobalt Oxide Catalytic Protection Layer. ChemElectroChem, 2016, 3, 1546-1552.	1.7	22
140	Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles. Catalysis Today, 2016, 262, 57-64.	2.2	27
141	Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media. Solar Energy Materials and Solar Cells, 2016, 144, 758-765.	3.0	52
142	Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. Surface Science, 2016, 648, 278-283.	0.8	15
143	Pt Gd alloy formation on Pt(111): Preparation and structural characterization. Surface Science, 2016, 652, 114-122.	0.8	16
144	Novel micro-reactor flow cell for investigation ofÂmodel catalysts using <i>in situ</i> grazing-incidence X-ray scattering. Journal of Synchrotron Radiation, 2016, 23, 455-463.	1.0	2

#	Article	IF	CITATIONS
145	Fast and sensitive method for detecting volatile species in liquids. Review of Scientific Instruments, 2015, 86, 075006.	0.6	22
146	Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Tiâ€Stabilized MnO ₂ . Advanced Energy Materials, 2015, 5, 1500991.	10.2	177
147	Determination of Core–Shell Structures in Pdâ€Hg Nanoparticles by STEMâ€EDX. ChemCatChem, 2015, 7, 3748-3752.	1.8	9
148	The enhanced activity of mass-selected Pt Gd nanoparticles for oxygen electroreduction. Journal of Catalysis, 2015, 328, 297-307.	3.1	83
149	Crystalline TiO ₂ : A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes. Journal of Physical Chemistry C, 2015, 119, 15019-15027.	1.5	85
150	Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy. Catalysis Today, 2015, 244, 130-135.	2.2	7
151	Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions. Journal of Physical Chemistry C, 2015, 119, 2804-2812.	1.5	49
152	Synthesis and characterization of Fe–Ni/ɣ-Al2O3 egg-shell catalyst for H2 generation by ammonia decomposition. Applied Catalysis A: General, 2015, 505, 548-556.	2.2	24
153	Physical properties of the GaPd2 intermetallic catalyst in bulk and nanoparticle morphology. Intermetallics, 2015, 67, 35-46.	1.8	5
154	Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. Journal of the American Chemical Society, 2015, 137, 9808-9811.	6.6	516
155	Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n ⁺ p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H ₂ (g). Journal of Physical Chemistry Letters, 2015, 6, 1679-1683.	2.1	60
156	Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochimica Acta, 2015, 179, 647-657.	2.6	86
157	Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. Journal of Physical Chemistry Letters, 2015, 6, 951-957.	2.1	626
158	Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128.	1.3	54
159	Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting. ACS Catalysis, 2015, 5, 5530-5539.	5.5	40
160	Selective CO Methanation on Ru/TiO ₂ Catalysts: Role and Influence of Metal–Support Interactions. ACS Catalysis, 2015, 5, 6753-6763.	5.5	113
161	Scalability and feasibility of photoelectrochemical H ₂ evolution: the ultimate limit of Pt nanoparticle as an HER catalyst. Energy and Environmental Science, 2015, 8, 2991-2999.	15.6	162
162	Intermetallic GaPd ₂ Nanoparticles on SiO ₂ for Low-Pressure CO ₂ Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization. ACS Catalysis, 2015, 5, 5827-5836.	5.5	125

#	Article	IF	CITATIONS
163	A quick look at how photoelectrodes work. Science, 2015, 350, 1030-1031.	6.0	8
164	Reduction of a Ni/Spinel Catalyst for Methane Reforming. Journal of Physical Chemistry C, 2015, 119, 1424-1432.	1.5	12
165	Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution. Energy and Environmental Science, 2015, 8, 650-660.	15.6	76
166	On the stability of copper overlayers on Au(1 1 1) and Au(1 0 0) electrodes under low potential conditions and in the presence on CO and CO2. Surface Science, 2015, 631, 155-164.	0.8	11
167	Oxygen evolution on well-characterized mass-selected Ru and RuO ₂ nanoparticles. Chemical Science, 2015, 6, 190-196.	3.7	298
168	Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides. ChemCatChem, 2015, 7, 149-154.	1.8	114
169	Removal of low concentration contaminant species using photocatalysis: Elimination of ethene to sub-ppm levels with and without water vapor present. Chemical Engineering Journal, 2015, 262, 648-657.	6.6	14
170	Mo ₃ S ₄ Clusters as an Effective H ₂ Evolution Catalyst on Protected Si Photocathodes. Journal of the Electrochemical Society, 2014, 161, H722-H724.	1.3	24
171	Benchmarking the Stability of Oxygen Evolution Reaction Catalysts: The Importance of Monitoring Mass Losses. ChemElectroChem, 2014, 1, 2075-2081.	1.7	301
172	Morphology of Ruthenium Particles for Methanation under Reactive Conditions. Microscopy and Microanalysis, 2014, 20, 416-417.	0.2	0
173	An Open-Source Data Storage and Visualization Back End for Experimental Data. Journal of the Association for Laboratory Automation, 2014, 19, 183-190.	2.8	3
174	Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 2014, 6, 320-324.	6.6	865
175	Quantification of Zinc Atoms in a Surface Alloy on Copper in an Industrialâ€∓ype Methanol Synthesis Catalyst. Angewandte Chemie - International Edition, 2014, 53, 5941-5945.	7.2	231
176	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). Journal of Catalysis, 2014, 309, 397-407.	3.1	54
177	Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. Journal of Catalysis, 2014, 320, 77-88.	3.1	110
178	Formation of a p–n heterojunction on GaP photocathodes for H ₂ production providing an open-circuit voltage of 710 mV. Journal of Materials Chemistry A, 2014, 2, 6847-6853.	5.2	75
179	Towards the elucidation of the high oxygen electroreduction activity of Pt _x Y: surface science and electrochemical studies of Y/Pt(111). Physical Chemistry Chemical Physics, 2014, 16, 13718-13725.	1.3	27
180	Enhanced activity and stability of Pt–La and Pt–Ce alloys for oxygen electroreduction: the elucidation of the active surface phase. Journal of Materials Chemistry A, 2014, 2, 4234.	5.2	105

#	Article	IF	CITATIONS
181	Exploring the phase space of time of flight mass selected Pt _x Y nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 26506-26513.	1.3	20
182	<i>In situ</i> ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution. Microscopy (Oxford, England), 2014, 63, 397-401.	0.7	6
183	Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. Journal of Physical Chemistry Letters, 2014, 5, 3456-3461.	2.1	93
184	Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nature Chemistry, 2014, 6, 732-738.	6.6	298
185	Faradaic efficiency of O ₂ evolution on metal nanoparticle sensitized hematite photoanodes. Physical Chemistry Chemical Physics, 2014, 16, 1271-1275.	1.3	29
186	Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction. Topics in Catalysis, 2014, 57, 245-254.	1.3	47
187	Protection of p ⁺ -n-Si Photoanodes by Sputter-Deposited Ir/IrO _{<i>x</i>} Thin Films. Journal of Physical Chemistry Letters, 2014, 5, 1948-1952.	2.1	97
188	Trends in the Electrochemical Synthesis of H ₂ O ₂ : Enhancing Activity and Selectivity by Electrocatalytic Site Engineering. Nano Letters, 2014, 14, 1603-1608.	4.5	521
189	2-Photon tandem device for water splitting: comparing photocathode first <i>versus</i> photoanode first designs. Energy and Environmental Science, 2014, 7, 2397-2413.	15.6	130
190	Controlled Environment Specimen Transfer. Microscopy and Microanalysis, 2014, 20, 1038-1045.	0.2	2
191	Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. Journal of Catalysis, 2013, 307, 214-221.	3.1	77
192	Lightâ€Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope. ChemCatChem, 2013, 5, 2667-2672.	1.8	25
193	MoS2—an integrated protective and active layer on n+p-Si for solar H2 evolution. Physical Chemistry Chemical Physics, 2013, 15, 20000.	1.3	89
194	High purity H2/H2O/Ni/SZ electrodes at 500°C. Solid State Ionics, 2013, 234, 11-18.	1.3	2
195	Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12, 1137-1143.	13.3	1,031
196	Silicon protected with atomic layer deposited TiO2: conducting versus tunnelling through TiO2. Journal of Materials Chemistry A, 2013, 1, 15089.	5.2	51
197	Methanation on mass-selected Ru nanoparticles on a planar SiO2 model support: The importance of under-coordinated sites. Journal of Catalysis, 2013, 308, 282-290.	3.1	20
198	CO ₂ Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211). Journal of Physical Chemistry C, 2013, 117, 20500-20508.	1.5	119

#	Article	IF	CITATIONS
199	Self-sustained carbon monoxide oxidation oscillations on size-selected platinum nanoparticles at atmospheric pressure. Physical Chemistry Chemical Physics, 2013, 15, 2698.	1.3	13
200	Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution. RSC Advances, 2013, 3, 25902.	1.7	104
201	Layered Nanojunctions for Hydrogenâ€Evolution Catalysis. Angewandte Chemie - International Edition, 2013, 52, 3621-3625.	7.2	793
202	A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chemical Communications, 2013, 49, 4965.	2.2	147
203	Using TiO ₂ as a Conductive Protective Layer for Photocathodic H ₂ Evolution. Journal of the American Chemical Society, 2013, 135, 1057-1064.	6.6	426
204	Activity and Selectivity for O ₂ Reduction to H ₂ O ₂ on Transition Metal Surfaces. ECS Transactions, 2013, 58, 53-62.	0.3	13
205	A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements. Review of Scientific Instruments, 2013, 84, 103910.	0.6	7
206	A general route for RuO ₂ deposition on metal oxides from RuO ₄ . Chemical Communications, 2012, 48, 967-969.	2.2	30
207	Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition. Applied Catalysis A: General, 2012, 447-448, 22-31.	2.2	81
208	The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Physical Chemistry Chemical Physics, 2012, 14, 76-81.	1.3	576
209	Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near‣urface Alloys of Cu/Pt(111). Angewandte Chemie - International Edition, 2012, 51, 11845-11848.	7.2	94
210	Probing the active sites for CO dissociation on ruthenium nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 8005.	1.3	25
211	A cell for the controllable thermal treatment and electrochemical characterisation of single crystal alloy electrodes. Electrochemistry Communications, 2012, 23, 33-36.	2.3	25
212	Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy and Environmental Science, 2012, 5, 5577.	15.6	1,225
213	Structural Modification of Platinum Model Systems under High Pressure CO Annealing. Journal of Physical Chemistry C, 2012, 116, 15353-15360.	1.5	19
214	Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reaction. Journal of Physical Chemistry C, 2012, 116, 5773-5780.	1.5	8
215	H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG. Surface Science, 2012, 606, 263-272.	0.8	15
216	High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors. Review of Scientific Instruments, 2012, 83, 075105.	0.6	5

#	Article	IF	CITATIONS
217	Pt ₅ Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction. Journal of the American Chemical Society, 2012, 134, 16476-16479.	6.6	234
218	Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis. Applied Catalysis A: General, 2012, 433-434, 243-250.	2.2	14
219	Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a 1¼-reactor. Journal of Catalysis, 2012, 292, 26-31.	3.1	45
220	The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum. Journal of Power Sources, 2012, 220, 205-210.	4.0	27
221	Hydrogen Production Using a Molybdenum Sulfide Catalyst on a Titaniumâ€Protected n ⁺ pâ€Silicon Photocathode. Angewandte Chemie - International Edition, 2012, 51, 9128-9131.	7.2	289
222	Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions. Electrochimica Acta, 2012, 82, 517-523.	2.6	28
223	Towards practical implementation. Nature Materials, 2012, 11, 100-101.	13.3	128
224	Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 5646-5653.	1.5	61
225	New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy and Environmental Science, 2012, 5, 9034.	15.6	211
226	Dynamical Properties of a Ru/MgAl ₂ O ₄ Catalyst during Reduction and Dry Methane Reforming. Journal of Physical Chemistry C, 2012, 116, 21407-21415.	1.5	86
227	Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy and Environmental Science, 2012, 5, 6744.	15.6	991
228	Photoelectrocatalysis and electrocatalysis on silicon electrodes decorated with cubane-like clusters. Journal of Photonics for Energy, 2012, 2, 026001.	0.8	22
229	The Effect of Size on the Oxygen Electroreduction Activity of Massâ€5elected Platinum Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 4641-4643.	7.2	319
230	Oxygen Electroreduction Activity and Xâ€Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys. ChemCatChem, 2012, 4, 341-349.	1.8	84
231	A generic model for photocatalytic activity as a function of catalyst thickness. Journal of Catalysis, 2012, 289, 62-72.	3.1	23
232	Quenching of TiO2 photo catalysis by silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 230, 10-14.	2.0	11
233	Gas phase photocatalytic water splitting with Rh2â^'yCryO3/GaN:ZnO in μ-reactors. Energy and Environmental Science, 2011, 4, 2937.	15.6	71
234	Is the methanation reaction over Ru single crystals structure dependent?. Physical Chemistry Chemical Physics, 2011, 13, 4486.	1.3	21

#	Article	IF	CITATIONS
235	Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts. Physical Chemistry Chemical Physics, 2011, 13, 10333.	1.3	11
236	H ₂ Splitting on Pt/Ru Alloys Supported on Sputtered HOPG. Journal of Physical Chemistry C, 2011, 115, 25351-25358.	1.5	5
237	Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays. Chemical Communications, 2011, 47, 2613.	2.2	41
238	Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying. Journal of the American Chemical Society, 2011, 133, 5485-5491.	6.6	447
239	Hydrogen evolution on Au(111) covered with submonolayers of Pd. Physical Review B, 2011, 84, .	1.1	45
240	Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nature Materials, 2011, 10, 434-438.	13.3	600
241	A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222, 258-262.	2.0	38
242	Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. Journal of Catalysis, 2011, 281, 147-155.	3.1	181
243	The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study. Langmuir, 2011, 27, 2058-2066.	1.6	170
244	Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia. Solid State Ionics, 2011, 190, 82-87.	1.3	5
245	Minimizing the Use of Platinum in Hydrogenâ€Evolving Electrodes. Angewandte Chemie - International Edition, 2011, 50, 1476-1477.	7.2	150
246	Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction. Journal of Power Sources, 2011, 196, 6085-6091.	4.0	104
247	Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures. Solid State Ionics, 2011, 190, 60-66.	1.3	8
248	Note: Simple means for selective removal of the 365 nm line from the Hg spectrum using Dy. Review of Scientific Instruments, 2011, 82, 096102.	0.6	5
249	Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, , .		1
250	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. , 2010, , 280-284.		16
251	Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode. Chemical Engineering Journal, 2010, 162, 314-321.	6.6	8
252	Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst. Catalysis Letters, 2010, 140, 90-97.	1.4	26

#	Article	IF	CITATIONS
253	The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source. Journal of Nanoparticle Research, 2010, 12, 1249-1262.	0.8	53
254	Self Blocking of CO Dissociation on a Stepped Ruthenium Surface. Topics in Catalysis, 2010, 53, 357-364.	1.3	44
255	Support effects and catalytic trends for water gas shift activity of transition metals. Journal of Molecular Catalysis A, 2010, 315, 163-170.	4.8	26
256	Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surface Science, 2010, 604, 718-729.	0.8	158
257	On the stability of the CO adsorption-induced and self-organized CuPt surface alloy. Surface Science, 2010, 604, 1733-1736.	0.8	11
258	Steam and CO2 reforming of methane over a Ru/ZrO2 catalyst. Applied Catalysis A: General, 2010, 377, 158-166.	2.2	60
259	Gas-phase photocatalysis in μ-reactors. Chemical Engineering Journal, 2010, 160, 738-741.	6.6	34
260	Combined <i>in situ</i> small- and wide-angle X-ray scattering studies of TiO ₂ nanoparticle annealing to 1023â€K. Journal of Applied Crystallography, 2010, 43, 1400-1408.	1.9	19
261	Controlled Directional Growth of TiO[sub 2] Nanotubes. Journal of the Electrochemical Society, 2010, 157, E69.	1.3	15
262	Note: Anodic bonding with cooling of heat-sensitive areas. Review of Scientific Instruments, 2010, 81, 016111.	0.6	21
263	Towards hot electron mediated charge exchange in hyperthermal energy ion–surface interactions. Journal of Physics Condensed Matter, 2010, 22, 084010.	0.7	3
264	Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in μ-Reactors. Journal of Physical Chemistry C, 2010, 114, 11162-11168.	1.5	27
265	The effect of atmospheric corona treatment on AA1050 aluminium. Corrosion Science, 2010, 52, 2155-2163.	3.0	10
266	Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM. Journal of the American Chemical Society, 2010, 132, 7968-7975.	6.6	374
267	Screening of electrocatalytic materials for hydrogen evolution. Physical Chemistry Chemical Physics, 2010, 12, 10536.	1.3	80
268	Subsurface excitations in a metal. Physical Review B, 2009, 80, .	1.1	5
269	Highly sensitive silicon microreactor for catalyst testing. Review of Scientific Instruments, 2009, 80, 124101.	0.6	45
270	Electron emission from ultralarge area metal-oxide-semiconductor electron emitters. Journal of Vacuum Science & Technology B, 2009, 27, 562.	1.3	7

#	Article	IF	CITATIONS
271	Transient behavior of Cu/ZnO-based methanol synthesis catalysts. Journal of Catalysis, 2009, 262, 65-72.	3.1	104
272	Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 2009, 1, 552-556.	6.6	2,716
273	Combined spectroscopy and microscopy of supported MoS2 nanoparticles. Surface Science, 2009, 603, 1182-1189.	0.8	30
274	A comparative STM study of Ru nanoparticles deposited on HOPG by mass-selected gas aggregation versus thermal evaporation. Surface Science, 2009, 603, 3420-3430.	0.8	25
275	Batch chemical microreactors: Reversible, in situ UHV sealing of a microcavity. Microelectronic Engineering, 2009, 86, 1389-1392.	1.1	0
276	Effect of alloying on carbon formation during ethane dehydrogenation. Applied Catalysis A: General, 2009, 358, 269-278.	2.2	31
277	Electron emission from MOS electron emitters with clean and cesium covered gold surface. Applied Surface Science, 2009, 255, 7657-7662.	3.1	4
278	Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR. Journal of the Electrochemical Society, 2009, 156, B273.	1.3	41
279	Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component. Journal of the American Chemical Society, 2009, 131, 2404-2407.	6.6	160
280	Formate stability and carbonate hydrogenation on strained Cu overlayers on Pt(111). Surface Science, 2008, 602, 2783-2788.	0.8	11
281	Interaction of carbon dioxide with Cu overlayers on Pt(111). Surface Science, 2008, 602, 702-711.	0.8	44
282	CO dissociation on Ni: The effect of steps and of nickel carbonyl. Surface Science, 2008, 602, 733-743.	0.8	72
283	The sticking probability for H2 in presence of CO on some transition metals at a hydrogen pressure of 1bar. Surface Science, 2008, 602, 1863-1870.	0.8	18
284	Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. Journal of Catalysis, 2008, 255, 6-19.	3.1	411
285	First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis, 2008, 259, 147-160.	3.1	559
286	Hydrogen Evolution on Supported Incomplete Cubane-type [Mo ₃ S ₄] ⁴⁺ Electrocatalysts. Journal of Physical Chemistry C, 2008, 112, 17492-17498.	1.5	218
287	The nature of the active site in heterogeneous metal catalysis. Chemical Society Reviews, 2008, 37, 2163.	18.7	703
288	The sticking probability for H2 on some transition metals at a hydrogen pressure of 1bar. Journal of Chemical Physics, 2008, 128, 034706.	1.2	44

#	Article	IF	CITATIONS
289	Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 2008, 140, 219-231.	1.6	732
290	Ultralarge area MOS tunnel devices for electron emission. Physical Review B, 2007, 76, .	1.1	12
291	Hydrogenation properties of catalyzed and non-catalyzed magnesium films. Surface Science, 2007, 601, 1862-1869.	0.8	24
292	Identification of Active Edge Sites for Electrochemical H ₂ Evolution from MoS ₂ Nanocatalysts. Science, 2007, 317, 100-102.	6.0	5,149
293	The sticking probability of hydrogen on Ni, Pd and Pt at a hydrogen pressure of 1Âbar. Topics in Catalysis, 2007, 46, 175-187.	1.3	24
294	Decomposition of lithium amide and imide films on nickel. Surface Science, 2007, 601, 830-836.	0.8	7
295	Metamorphosis of the mixed phase PtRu anode catalyst for direct methanol fuel cells after exposure of methanol: In situ and ex situ characterizations. Journal of Power Sources, 2007, 173, 110-120.	4.0	10
296	Adsorption of hydrogen on clean and modified magnesium films. Physical Review B, 2006, 74, .	1.1	38
297	Assembled monolayers of Mo3S44+ clusters on well-defined surfaces. Dalton Transactions, 2006, , 3985.	1.6	31
298	Hierarchical Self-Assembly of Designed 2 × 2-α-Helix Bundle Proteins on Au(111) Surfaces. Langmuir, 2006, 22, 6661-6667.	1.6	16
299	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006, 5, 909-913.	13.3	3,305
300	Design parameters for measurements of local catalytic activity on surfaces. Applied Surface Science, 2006, 252, 3673-3685.	3.1	13
301	Electrochemical impedance spectroscopy study of methanol oxidation on nanoparticulate PtRu direct methanol fuel cell anodes: Kinetics and performance evaluation. Journal of Power Sources, 2006, 162, 1010-1022.	4.0	53
302	Growth and decomposition of lithium and lithium hydride on nickel. Surface Science, 2006, 600, 1468-1474.	0.8	18
303	Adsorption and surface dynamics of short DNA and LNA oligonucleotides on single-crystal Au(111) electrode surfaces. Surface Science, 2006, 600, 122-127.	0.8	9
304	Dehydrogenation of Light Alkanes Over Rhenium Catalysts on Conventional and Mesoporous MFI Supports. Catalysis Letters, 2006, 109, 153-156.	1.4	13
305	Effect of oxygen on the hydrogenation properties of magnesium films. Surface Science, 2006, 600, 1363-1368.	0.8	29
306	Investigation of the role of oxygen induced segregation of Cu during Cu2O formation on Cu{100}, Ag/Cu{100} and Cu(Ag) alloy. Surface Science, 2005, 583, 157-165.	0.8	51

#	Article	IF	CITATIONS
307	Search for new catalysts from a fundamental basis. Catalysis Today, 2005, 100, 191-197.	2.2	11
308	Trends in low-temperature water?gas shift reactivity on transition metals. Journal of Catalysis, 2005, 229, 265-275.	3.1	213
309	The Ligand Effect: CO Desorption from Pt/Ru Catalysts. Fuel Cells, 2005, 5, 429-435.	1.5	66
310	Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. ChemInform, 2005, 36, no.	0.1	12
311	Growth and hydrogenation of ultra-thin Mg films on Mo(111). Surface Science, 2005, 584, 17-26.	0.8	19
312	Methane activation on Ni(111): Effects of poisons and step defects. Surface Science, 2005, 590, 127-137.	0.8	228
313	Conversion of Hydrogen on alloys and inorganic compounds. ECS Meeting Abstracts, 2005, , .	0.0	Ο
314	Mixed Phase Pt-Ru Catalyst for Direct Methanol Fuel Cell Anode by Flame Aerosol Synthesis. Journal of the Electrochemical Society, 2005, 152, A2357.	1.3	24
315	Isotopic Exchange of CO Adsorbed on Pt(111). Journal of Physical Chemistry B, 2005, 109, 10285-10290.	1.2	26
316	Biomimetic Hydrogen Evolution:Â MoS2Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2005, 127, 5308-5309.	6.6	3,497
317	Energetic Mapping of Ni Catalysts by Detailed Kinetic Modelingâ€. Journal of Physical Chemistry B, 2005, 109, 2360-2370.	1.2	17
318	Combined high-pressure cell–ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry. Review of Scientific Instruments, 2004, 75, 2082-2093.	0.6	37
319	Thiol- and disulfide-modified oligonucleotide monolayer structures on polycrystalline and single-crystal Au(111) surfaces. Journal of Solid State Electrochemistry, 2004, 8, 474-481.	1.2	37
320	CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts. Fuel Cells, 2004, 4, 309-319.	1.5	49
321	Methanol Synthesis on Potassium-Modified Cu(100) from CO + H2 and CO + CO2 + H2. Topics in Catalysis, 2003, 22, 151-160.	1.3	26
322	Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. Journal of Catalysis, 2003, 214, 327-335.	3.1	139
323	Effects of steps and defects on O 2 dissociation on clean and modified Cu(1 0 0). Surface Science, 2003, 538, 233-239.	0.8	17
324	Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces. Surface Science, 2003, 543, 207-218.	0.8	10

#	Article	IF	CITATIONS
325	Effect of impurities on structural and electrochemical properties of the Ni–YSZ interface. Solid State Ionics, 2003, 160, 27-37.	1.3	74
326	Adsorption and Interfacial Electron Transfer ofSaccharomycesCerevisiaeYeast CytochromecMonolayers on Au(111) Electrodes. Langmuir, 2003, 19, 3419-3427.	1.6	58
327	Monolayer Assemblies of a De Novo Designed 4-α-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2003, 125, 94-104.	6.6	44
328	New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. Chemical Communications, 2002, , 1206-1207.	2.2	61
329	Dissociation of CH4 on Ni(111) and Ru(0001). Surface Science, 2002, 497, 183-193.	0.8	96
330	The initial behaviour of freshly etched copper in moderately acid, aerated chloride solutions. Electrochimica Acta, 2002, 47, 4279-4290.	2.6	24
331	N2 dissociation on Fe(110) and Fe/Ru(0001): what is the role of steps?. Surface Science, 2001, 491, 183-194.	0.8	67
332	Molecular beam study of N2 dissociation on Ru(0001). Physical Chemistry Chemical Physics, 2001, 3, 2007-2011.	1.3	34
333	Microstructural and chemical changes at the Ni/YSZ interface. Solid State Ionics, 2001, 144, 197-209.	1.3	66
334	Improved Properties of the Catalytic Model System Ni/Ru(0001). Catalysis Letters, 2001, 77, 207-213.	1.4	15
335	Catalyst dynamics: consequences for classical kinetic descriptions of reactors. Chemical Engineering Journal, 2001, 82, 219-230.	6.6	9
336	On the chemical nature of boundary lubrication of stainless steel by chlorine- and sulfur-containing EP-additives. Wear, 2000, 246, 98-105.	1.5	17
337	Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. Journal of Molecular Catalysis A, 2000, 163, 19-26.	4.8	330
338	Methanol synthesis from CO2, CO and H2 over Cu(100) and Cu(100) modified by Ni and Co. Applied Catalysis A: General, 2000, 191, 97-109.	2.2	95
339	Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. Journal of Catalysis, 2000, 192, 391-399.	3.1	147
340	Dissociative adsorption of N on ru(0001): A surface reaction totally dominated by steps. Journal of Catalysis, 2000, 192, 381-390.	3.1	198
341	Molecular Monolayers and Interfacial Electron Transfer of Pseudomonas aeruginosa Azurin on Au(111). Journal of the American Chemical Society, 2000, 122, 4047-4055.	6.6	251
342	Dissociative sticking of CH4 on Ru(0001). Journal of Chemical Physics, 1999, 110, 2637-2642.	1.2	46

#	Article	IF	CITATIONS
343	From fundamental studies of reactivity on single crystals to the design of catalysts. Surface Science Reports, 1999, 35, 163-222.	3.8	209
344	Methanol Synthesis from CO2, CO, and H2over Cu(100) and Ni/Cu(100). Journal of Catalysis, 1999, 181, 271-279.	3.1	114
345	Chemisorption of Methane on Ni(100) and Ni(111) Surfaces with Preadsorbed Potassium. Journal of Catalysis, 1999, 187, 238-244.	3.1	94
346	Role of Steps inN2Activation on Ru(0001). Physical Review Letters, 1999, 83, 1814-1817.	2.9	706
347	Title is missing!. Catalysis Letters, 1998, 54, 171-176.	1.4	74
348	Enhanced reactivity of pseudomorphic Co on Cu(111). Catalysis Letters, 1998, 52, 1-5.	1.4	3
349	The Synthesis of Ammonia over a Ruthenium Single Crystal. Journal of Catalysis, 1998, 178, 679-686.	3.1	76
350	Mechanochemical Synthesis of Fe–S Materials. Journal of Solid State Chemistry, 1998, 138, 114-125.	1.4	60
351	Design of a Surface Alloy Catalyst for Steam Reforming. Science, 1998, 279, 1913-1915.	6.0	951
352	Increased dissociation probability of CH4 on Co/Cu(111). Surface Science, 1998, 405, 62-73.	0.8	50
353	The Dissociative Chemisorption of Nitrogen on Iron(111) at Elevated Pressures. Zeitschrift Fur Physikalische Chemie, 1997, 198, 123-134.	1.4	11
354	Nitrogen chemisorption on α -Fe nanoparticles studied by in situ Mössbauer spectroscopy. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1997, 40, 152-154.	1.0	7
355	The Interaction of Nitrogen with the (111) Surface of Iron at Low and at Elevated Pressures. Journal of Catalysis, 1997, 168, 217-234.	3.1	30
356	Nitrogen chemisorption on α-Fe nanoparticles studied by in situ Mössbauer spectroscopy. , 1997, , 152-154.		0
357	Improved current transport properties of post annealed Y1Ba2Cu3O7â^'x thin films using Ag doping. Journal of Applied Physics, 1996, 79, 7062-7068.	1.1	15
358	A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions. Journal of Catalysis, 1996, 158, 170-180.	3.1	218
359	Designing surface alloys with specific active sites. Catalysis Letters, 1996, 40, 131-135.	1.4	77
360	Modification of Ni(111) reactivity toward CH4, CO, and D2 by twoâ€dimensional alloying. Journal of Chemical Physics, 1996, 104, 7289-7295.	1.2	107

#	Article	IF	CITATIONS
361	Adhesion of ceramics to Inconel 600 under various chemical conditions. Surface and Interface Analysis, 1995, 23, 779-784.	0.8	1
362	Activated dissociative chemisorption of methane on Ni(100): a direct mechanism under thermal conditions?. Catalysis Letters, 1995, 32, 15-30.	1.4	90
363	Response to â€~â€~Comment on â€~Enhanced Jc's of YBa2Cu3O7â^'x–Ag ex situ annealed coevaporated filr LaAlO3 (100) substrates' '' [Appl. Phys. Lett. 67, 3650 (1995)]. Applied Physics Letters, 1995, 67, 365	nş on 52-3652.	1
364	H2S interaction with Cu(100)-(2 â^š2 × â^š2)R45°-O: Formation of a metastable‗05sulfur52surface reconstruction. Physical Review B, 1995, 52, 2076-2082.	1.1	3
365	Molecular beam study of dissociative sticking of methane on Ni(100). Journal of Chemical Physics, 1995, 102, 8255-8263.	1.2	172
366	Is the observed hydrogenation of formate the rate-limiting step in methanol synthesis?. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1267.	1.7	35
367	Scanning-tunneling-microscopy studies of the S-induced reconstruction of Cu(100). Physical Review B, 1994, 50, 8798-8806.	1.1	48
368	EnhancedJc's of YBa2Cu3O7â^'x–Agex situannealed coevaporated films on LaAlO3(100) substrates. Applied Physics Letters, 1994, 65, 2350-2352.	1.5	9
369	AES and SAM studies of oxide formation on Inconel 600 at high temperatures. Surface and Interface Analysis, 1994, 22, 441-444.	0.8	11
370	Schottky barrier inhomogeneities in Au-Ni and Au-Cr contacts to InP-ohmic contact applications. Applied Surface Science, 1994, 74, 287-295.	3.1	10
371	Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catalysis Letters, 1994, 26, 373-381.	1.4	231
372	A corrosion study of laser-cut edges of aluminium and Al-3Mg alloy using CMT (corrosion) Tj ETQq0 0 0 rgBT /Ove	rlgck 10 T	f 50 302 Td 10
373	Synthesis of methanol from a mixture of H2 and CO2 on Cu(100). Surface Science, 1994, 318, 267-280.	0.8	151
374	Advanced surface analysis on high-pressure CO 2 laser cut test pieces in pure and alloyed aluminum. , 1994, , .		2
375	Dissociative chemisorption of O2 on Cu(100). Effects of mechanical energy transfer and recoil. Chemical Physics Letters, 1993, 216, 413-417.	1.2	44
376	Transport properties of low-resistance ohmic contacts to InP. Thin Solid Films, 1993, 232, 215-227.	0.8	19
377	Mobility and oxidation of boron in Feî—,B and Feî—,Niî—,B glasses. Nuclear Instruments & Methods in Physics Research B, 1993, 76, 99-100.	0.6	2
378	Interaction of hydrogen with carbidic carbon on Ni(100). Surface Science, 1993, 293, 133-144.	0.8	17

#	Article	IF	CITATIONS
379	Dissociative adsorption of hydrogen on Cu(100) at low temperatures. Surface Science, 1993, 287-288, 79-83.	0.8	61
380	The stabilization of adsorbed carbon dioxide by formate on Cu(100). Surface Science, 1993, 287-288, 208-211.	0.8	9
381	Carbon dioxide chemistry on Cu(100). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2570-2575.	0.9	19
382	Synthesis and hydrogenation of formate on Cu(100) at high pressures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2277-2281.	0.9	34
383	The interaction of CH4 at high temperatures with clean and oxygen precovered Cu(100). Surface Science, 1992, 264, 95-102.	0.8	77
384	Formate synthesis on Cu(100). Surface Science, 1992, 261, 191-206.	0.8	94
385	The interaction of carbon dioxide with Cu(100). Surface Science, 1992, 269-270, 352-359.	0.8	81
386	Reconstruction of Cu(100) by adsorption of atomic hydrogen. Surface Science, 1991, 248, 35-44.	0.8	90
387	Formate synthesis on Cu(100). Journal of Physics Condensed Matter, 1991, 3, S59-S63.	0.7	5
388	The p4g or pgg reconstruction on Cu(100). Journal of Physics Condensed Matter, 1991, 3, S107-S110.	0.7	5
389	THE Sm/Si(100) interface studied by electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1990, 52, 67-78.	0.8	11
390	Xps study of chemisorption of CH4 on Ni(100). Surface Science, 1990, 227, 291-296.	0.8	98
391	Dissociative chemisorption of CH4 on Ni(100) with preadsorbed oxygen. Surface Science, 1990, 234, 79-86.	0.8	37
392	Adsorption and dissociation of HCN on the Pt(111) and Pt(112) surfaces. Surface Science, 1988, 203, 1-16.	0.8	38
393	Oxidation of HCN on the Pt(111) and Pt(112) surfaces. Surface Science, 1988, 203, 17-32.	0.8	20
394	Mixed valence of Sm on metal single-crystal surfaces. Physical Review B, 1988, 37, 4809-4812.	1.1	44
395	Scanning kinetic spectroscopy and temperature-programmed desorption studies of the adsorption and decomposition of hydrogen cyanide on the nickel(111) surface. The Journal of Physical Chemistry, 1988, 92, 471-476.	2.9	28
396	Surface reaction pathways of methylamine on the Ni(111) surface. Journal of Chemical Physics, 1987, 86, 4692-4700.	1.2	60

#	Article	IF	CITATIONS
397	Methanol decomposition on Ni(111): Investigation of the C-O bond scission mechanism. Surface Science, 1987, 183, 316-330.	0.8	40
398	Co adsorption site exchange between step and terrace sites on Pt(112). Surface Science, 1987, 191, L813-L818.	0.8	65
399	Hydrogen implantation in Ni(111) — A study of H2 desorption dynamics from the bulk. Surface Science, 1987, 182, 375-389.	0.8	41
400	Background subtraction in electron spectroscopy by use of reflection electron energy loss spectra. Applied Surface Science, 1987, 29, 101-112.	3.1	13
401	Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra: Application to background removal in electron spectroscopy. Physical Review B, 1987, 35, 6570-6577.	1.1	284
402	Bremsstrahlung induced Auger electron spectra (BAES) of transition metals. Fresenius Zeitschrift Für Analytische Chemie, 1987, 329, 152-157.	0.7	2
403	Isotopic Effects in the Adsorption and Desorption of Hydrogen by Ni(111). Springer Series in Surface Sciences, 1987, , 71-88.	0.3	1
404	Quantitative analysis of reflection electron energy loss spectra of aluminum. Solid State Communications, 1986, 57, 77-79.	0.9	24
405	High-intensity transition in the low-energy part of the electron-energy-loss spectra of Yb and related metals. Physical Review B, 1986, 33, 3503-3506.	1.1	14
406	Angular distributions of H2 thermal desorption: Coverage dependence on Ni(111). Journal of Chemical Physics, 1986, 85, 6186-6191.	1.2	37
407	High- and low-energy Auger-electron transitions in ytterbium and gold: Theory and experiments. Physical Review B, 1986, 33, 937-942.	1.1	2
408	Electronic and Geometrical Structures of Yb-Al (110), Yb-Si (111) and Yb-Ni (110) Interfaces Studies in Surface Science and Catalysis, 1985, , 21-31.	1.5	0
409	Spectroscopic and structural investigations of the Ybî—Al(110), Ybî—,Ni(110) and Ybî—,Si(111) interfaces as a function of temperature. Surface Science, 1985, 152-153, 749-756.	0.8	40
410	The Ybî—,Ni interface studied with photoemission spectroscopy. Surface Science, 1985, 160, 587-598.	0.8	26
411	3presonance photoionization of the valence band in metallic Ca: Atomic and solid-state many-body effects. Physical Review B, 1984, 30, 6251-6254.	1.1	18
412	Structural investigations of the Yb î—, Si(111) - 2x1, 5x1 and 3x1 overlayers. Solid State Communications, 1984, 52, 283-286.	0.9	23
413	Surface segregation and mixed valency in dilute Yb-Al interdiffusion compounds. Surface Science, 1984, 143, 177-187.	0.8	28
414	The Yb/Al(110) interface studied by electron spectroscopy. Surface Science, 1984, 138, 148-158.	0.8	19

#	Article	IF	CITATIONS
415	Tables of Auger transition amplitudes. Journal of Electron Spectroscopy and Related Phenomena, 1983, 32, 1-57.	0.8	6
416	Low Energy Auger Spectrum of Tungsten. Physica Scripta, 1983, T4, 165-168.	1.2	3
417	METAL SURFACES STUDIED BY ELECTRON ENERGY LOSS SPECTROSCOPY. Annals of the New York Academy of Sciences, 1983, 410, 39-46.	1.8	0
418	4pand4dAuger spectra of atomic and solid Yb. Physical Review B, 1983, 27, 945-954.	1.1	30
419	Tm Studied by Electron Energy-Loss Spectroscopy and Auger Electron Spectroscopy. Physica Scripta, 1983, T4, 169-172.	1.2	11
420	A combined X-Ray photoelectron and Mī¿½ssbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co\$z.sbnd;Mo catalysts. Journal of Catalysis, 1982, 77, 397-409.	3.1	326
421	Reversible Solid Oxide Cells. , 0, , 91-101.		4
422	High Purity H2/H2O/Nickel/Stabilized Zirconia Electrodes at 500°C. Ceramic Engineering and Science Proceedings, 0, , 159-168.	0.1	0