Alison P Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491942/publications.pdf

Version: 2024-02-01

134 22,203 53 123
papers citations h-index g-index

141 141 141 26704 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Endoplasmic stressâ€inducing variants in <scp><i>CPB1</i></scp> and <scp><i>CPA1</i></scp> and risk of pancreatic cancer: A caseâ€control study and metaâ€analysis. International Journal of Cancer, 2022, 150, 1123-1133.	5.1	11
2	Functional CDKN2A assay identifies frequent deleterious alleles misclassified as variants of uncertain significance. ELife, $2022,11,1$	6.0	6
3	The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. Journal of Clinical Oncology, 2022, 40, 3257-3266.	1.6	69
4	RAD51B Harbors Germline Mutations Associated With Pancreatic Ductal Adenocarcinoma. JCO Precision Oncology, 2022, , .	3.0	1
5	A pooled genome-wide association study identifies pancreatic cancer susceptibility loci on chromosome 19p12 and 19p13.3 in the full-Jewish population. Human Genetics, 2021, 140, 309-319.	3.8	2
6	Challenges of the current precision medicine approach for pancreatic cancer: A single institution experience between 2013 and 2017. Cancer Letters, 2021, 497, 221-228.	7.2	10
7	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	8.2	15
8	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.9	8
9	Pancreatic cancer pathology viewed in the light of evolution. Cancer and Metastasis Reviews, 2021, 40, 661-674.	5.9	7
10	Familial pancreatic cancer: who should be considered for genetic testing?. Irish Journal of Medical Science, 2021, , 1.	1.5	3
11	Two-Sample Mendelian Randomization Analysis of Associations Between Periodontal Disease and Risk of Cancer. JNCI Cancer Spectrum, 2021, 5, pkab037.	2.9	7
12	Germline sequence analysis of RABL3 in a large series of pancreatic ductal adenocarcinoma patients reveals no evidence of deleterious variants. Genes Chromosomes and Cancer, 2021, 60, 559-564.	2.8	3
13	Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 493-502.	17.8	370
14	Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies. American Journal of Clinical Nutrition, 2021, 114, 1408-1417.	4.7	9
15	Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals. Human Genetics and Genomics Advances, 2021, 2, 100041.	1.7	6
16	Examination of ATM, BRCA1, and BRCA2 promoter methylation in patients with pancreatic cancer. Pancreatology, 2021, 21, 938-941.	1.1	1
17	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	6.2	15
18	Risk of Pancreatic Cancer Among Individuals With Pathogenic Variants in the <i>ATM</i> Gene. JAMA Oncology, 2021, 7, 1664.	7.1	39

#	Article	IF	CITATIONS
19	Novel Models of Genetic Education and Testing for Pancreatic Cancer Interception: Preliminary Results from the GENERATE Study. Cancer Prevention Research, 2021, 14, 1021-1032.	1.5	15
20	A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO. British Journal of Cancer, 2021, 125, 1712-1717.	6.4	4
21	The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas, 2021, 50, 1123-1130.	1.1	24
22	Surgical Outcomes After Pancreatic Resection of Screening-Detected Lesions in Individuals at High Risk for Developing Pancreatic Cancer. Journal of Gastrointestinal Surgery, 2020, 24, 1101-1110.	1.7	55
23	Gene Variants That Affect Levels of Circulating Tumor Markers Increase Identification of Patients With Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 1161-1169.e5.	4.4	31
24	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	6.3	59
25	Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. Journal of Pathology, 2020, 252, 252-262.	4.5	30
26	The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Modern Pathology, 2020, 33, 2544-2563.	5.5	23
27	Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2735-2739.	2.5	6
28	Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.	2.6	0
29	Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 999-1008.	2.5	19
30	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	2.5	5
31	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.9	5
32	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	12.8	75
33	Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis. Journal of the National Cancer Institute, 2020, 112, 1162-1169.	6.3	114
34	Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science, 2020, 369, .	12.6	351
35	Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing. Journal of Molecular Diagnostics, 2020, 22, 748-756.	2.8	11
36	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	2.5	18

#	Article	IF	Citations
37	Screening for Pancreatic Cancerâ€"Is There Hope?. JAMA Internal Medicine, 2019, 179, 1313.	5.1	6
38	Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Modern Pathology, 2019, 32, 1806-1813.	5 . 5	21
39	A multimodality test to guide the management of patients with a pancreatic cyst. Science Translational Medicine, 2019, $11,\ldots$	12.4	129
40	A Pathway Analysis of Hereditary Hemochromatosis-related Genes and Pancreatic Ductal Adenocarcinoma Risk (FS11-05-19). Current Developments in Nutrition, 2019, 3, nzz037.FS11-05-19.	0.3	0
41	Pancreatic cancer: a growing burden. The Lancet Gastroenterology and Hepatology, 2019, 4, 895-896.	8.1	29
42	A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genetics, 2019, 15, e1008344.	3 . 5	13
43	Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.	2.5	48
44	A New Fast Phasing Method Based On Haplotype Subtraction. Journal of Molecular Diagnostics, 2019, 21, 427-436.	2.8	1
45	Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms. Gastroenterology, 2019, 156, 1905-1913.	1.3	47
46	Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. Journal of Clinical Oncology, 2019, 37, 1070-1080.	1.6	65
47	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	6.3	21
48	Abstract 1591: Large-scale transcriptome-wide association study (TWAS) identifies novel candidate susceptibility genes for pancreatic cancer. , 2019, , .		3
49	Abstract 1591: Large-scale transcriptome-wide association study (TWAS) identifies novel candidate susceptibility genes for pancreatic cancer. , 2019, , .		3
50	Determinants and prognostic value of quality of life in patients with pancreatic ductal adenocarcinoma. European Journal of Cancer, 2018, 92, 20-32.	2.8	21
51	Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359, 926-930.	12.6	1,872
52	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
53	Familial Pancreatic Cancer. , 2018, , 553-572.		2
54	Long-term analysis of 2 prospective studies that incorporate mitomycin C into an adjuvant chemoradiation regimen for pancreatic and periampullary cancers. Advances in Radiation Oncology, 2018, 3, 42-51.	1.2	2

#	Article	IF	Citations
55	Exome-Wide Association Study of Pancreatic Cancer Risk. Gastroenterology, 2018, 154, 719-722.e3.	1.3	38
56	Exome Array Analysis of Nuclear Lens Opacity. Ophthalmic Epidemiology, 2018, 25, 215-219.	1.7	3
57	Genomic analysis identifies frequent deletions of Dystrophin in olfactory neuroblastoma. Nature Communications, 2018, 9, 5410.	12.8	30
58	Refraction and Change in Refraction Over a 20-Year Period in the Beaver Dam Eye Study. , 2018, 59, 4518.		18
59	Association analysis of exome variants and refraction, axial length, and corneal curvature in a European-American population. Human Mutation, 2018, 39, 1973-1979.	2.5	3
60	Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology, 2018, 155, 740-751.e2.	1.3	288
61	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
62	Alterations of type II classical cadherin, cadherinâ€10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes and Cancer, 2017, 56, 427-435.	2.8	8
63	Haplotype Counting for Sensitive Chimerism Testing. Journal of Molecular Diagnostics, 2017, 19, 427-436.	2.8	10
64	Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10202-10207.	7.1	438
65	Impact of Sixteen Established Pancreatic Cancer Susceptibility Loci in American Jews. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1540-1548.	2.5	6
66	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
67	Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2017, 35, 3382-3390.	1.6	316
68	Inherited pancreatic cancer. Chinese Clinical Oncology, 2017, 6, 58-58.	1.2	26
69	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	1.8	88
70	Familial Pancreatic Cancer., 2016,, 1-20.		0
71	Association of Common Susceptibility Variants of Pancreatic Cancer in Higher-Risk Patients: A PACGENE Study. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1185-1191.	2.5	29
72	Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25, ddw300.	2.9	24

#	Article	IF	CITATIONS
73	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016 , 7 , 11843 .	12.8	86
74	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
75	Using Quantitative Seroproteomics to Identify Antibody Biomarkers in Pancreatic Cancer. Cancer Immunology Research, 2016, 4, 225-233.	3.4	21
76	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	3 . 5	98
77	Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Molecular Vision, 2016, 22, 783-96.	1.1	8
78	Transflip mutations produce deletions in pancreatic cancer. Genes Chromosomes and Cancer, 2015, 54, 472-481.	2.8	9
79	<scp><i>TERT</i>gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.</scp>	5.1	57
80	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	6.3	152
81	Exome Array Analysis Identifies CAV1/CAV2 as a Susceptibility Locus for Intraocular Pressure. Investigative Ophthalmology and Visual Science, 2015, 56, 544-551.	3.3	43
82	A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology, 2015, 15, 387-391.	1.1	32
83	Familial and sporadic pancreatic cancer share the same molecular pathogenesis. Familial Cancer, 2015, 14, 95-103.	1.9	54
84	Family history as a marker of platinum sensitivity in pancreatic adenocarcinoma. Cancer Chemotherapy and Pharmacology, 2015, 76, 489-498.	2.3	59
85	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	21.4	224
86	Intraductal papillary mucinous neoplasm in a neonate with congenital hyperinsulinism and a de novo germline SKIL gene mutation. Pancreatology, 2015, 15, 194-196.	1.1	8
87	BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genetics in Medicine, 2015, 17, 569-577.	2.4	231
88	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
89	Having Pancreatic Cancer with Tumoral Loss of ATM and Normal TP53 Protein Expression Is Associated with a Poorer Prognosis. Clinical Cancer Research, 2014, 20, 1865-1872.	7.0	81
90	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294

#	Article	IF	CITATIONS
91	The Early Detection of Pancreatic Cancer: What Will It Take to Diagnose and Treat Curable Pancreatic Neoplasia?. Cancer Research, 2014, 74, 3381-3389.	0.9	207
92	Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti–PD-1 Therapy. Clinical Cancer Research, 2014, 20, 5064-5074.	7.0	2,050
93	Identifying people at a high risk of developing pancreatic cancer. Nature Reviews Cancer, 2013, 13, 66-74.	28.4	127
94	An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PLoS ONE, 2013, 8, e72311.	2.5	120
95	<i>ATM</i> Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discovery, 2012, 2, 41-46.	9.4	442
96	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	2.8	102
97	Clinical Significance of the Genetic Landscape of Pancreatic Cancer and Implications for Identification of Potential Long-term Survivors. Clinical Cancer Research, 2012, 18, 6339-6347.	7.0	220
98	Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals. Gastroenterology, 2012, 142, 796-804.	1.3	570
99	Genetic susceptibility to pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 14-24.	2.7	192
100	Identification of functional genetic variation in exome sequence analysis. BMC Proceedings, 2011, 5, S13.	1.6	9
101	Linkage Analysis of Quantitative Refraction and Refractive Errors in the Beaver Dam Eye Study. , 2011, 52, 5220.		18
102	Recurrent <i>GNAS</i> Mutations Define an Unexpected Pathway for Pancreatic Cyst Development. Science Translational Medicine, 2011, 3, 92ra66.	12.4	703
103	Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21188-21193.	7.1	585
104	Personalizing Cancer Treatment in the Age of Global Genomic Analyses: <i>PALB2</i> Gene Mutations and the Response to DNA Damaging Agents in Pancreatic Cancer. Molecular Cancer Therapeutics, 2011, 10, 3-8.	4.1	238
105	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	21.4	539
106	Importance of Age of Onset in Pancreatic Cancer Kindreds. Journal of the National Cancer Institute, 2010, 102, 119-126.	6.3	193
107	Update on Familial Pancreatic Cancer. Advances in Surgery, 2010, 44, 293-311.	1.3	224
108	Absence of Deleterious Palladin Mutations in Patients with Familial Pancreatic Cancer: Table 1 Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1328-1330.	2.5	39

#	Article	IF	Citations
109	Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.	12.6	713
110	Elevated Cancer Mortality in the Relatives of Patients with Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2829-2834.	2.5	65
111	Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer Biology and Therapy, 2009, 8, 131-135.	3.4	50
112	Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clinical Cancer Research, 2009, 15, 7737-7743.	7.0	195
113	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	21.4	597
114	Heritability Analysis of Spherical Equivalent, Axial Length, Corneal Curvature, and Anterior Chamber Depth in the Beaver Dam Eye Study. JAMA Ophthalmology, 2009, 127, 649.	2.4	91
115	Familial Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2009, 133, 365-374.	2.5	166
116	Incorporating tumor immunohistochemical markers in BRCA1 and BRCA2 carrier prediction. Breast Cancer Research, 2008, 10, 401.	5.0	20
117	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	12.6	3,755
118	Prevalence of Unsuspected Pancreatic Cysts on MDCT. American Journal of Roentgenology, 2008, 191, 802-807.	2.2	792
119	The Prevalence of BRCA2 Mutations in Familial Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 342-346.	2.5	255
120	Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 1592-1599.	3.4	36
121	Linkage analysis of chromosome 4 in families with familial pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 320-323.	3.4	20
122	PancPRO: Risk Assessment for Individuals With a Family History of Pancreatic Cancer. Journal of Clinical Oncology, 2007, 25, 1417-1422.	1.6	183
123	Confirmation of Linkage to Ocular Refraction on Chromosome 22q and Identification of a Novel Linkage Region on 1q. JAMA Ophthalmology, 2007, 125, 80.	2.4	47
124	Familial pancreatic cancer: from genes to improved patient care. Expert Review of Gastroenterology and Hepatology, 2007, 1, 81-88.	3.0	16
125	DNA Methylation Alterations in the Pancreatic Juice of Patients with Suspected Pancreatic Disease. Cancer Research, 2006, 66, 1208-1217.	0.9	207
126	Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 704-710.	2.5	133

ALISON P KLEIN

#	ARTICLE	lF	CITATIONS
127	Overview of Linkage Analysis: Application to Pancreatic Cancer. , 2005, 103, 329-342.		3
128	Investigation of altering single-nucleotide polymorphism density on the power to detect trait loci and frequency of false positive in nonparametric linkage analyses of qualitative traits. BMC Genetics, 2005, 6, S20.	2.7	5
129	Support for Polygenic Influences on Ocular Refractive Error. , 2005, 46, 442.		51
130	Polygenic Effects and Cigarette Smoking Account for a Portion of the Familial Aggregation of Nuclear Sclerosis. American Journal of Epidemiology, 2005, 161, 707-713.	3.4	17
131	Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Research, 2004, 64, 2634-2638.	0.9	595
132	Evidence for a major gene influencing risk of pancreatic cancer. Genetic Epidemiology, 2002, 23, 133-149.	1.3	123
133	Multipoint Linkage Analysis Under Heterogeneity: Incorporation of Parametric and Nonparametric Approaches. Genetic Epidemiology, 2001, 21, S55-60.	1.3	0
134	Environmental covariates: Effects on the power of sibâ€pair linkage methods. Genetic Epidemiology, 1999, 17, S643-8.	1.3	9