Alison P Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	12.6	3,755
2	Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti–PD-1 Therapy. Clinical Cancer Research, 2014, 20, 5064-5074.	7.0	2,050
3	Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359, 926-930.	12.6	1,872
4	Prevalence of Unsuspected Pancreatic Cysts on MDCT. American Journal of Roentgenology, 2008, 191, 802-807.	2.2	792
5	Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.	12.6	713
6	Recurrent <i>GNAS</i> Mutations Define an Unexpected Pathway for Pancreatic Cyst Development. Science Translational Medicine, 2011, 3, 92ra66.	12.4	703
7	Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nature Genetics, 2009, 41, 986-990.	21.4	597
8	Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Research, 2004, 64, 2634-2638.	0.9	595
9	Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21188-21193.	7.1	585
10	Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals. Gastroenterology, 2012, 142, 796-804.	1.3	570
11	A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nature Genetics, 2010, 42, 224-228.	21.4	539
12	<i>ATM</i> Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discovery, 2012, 2, 41-46.	9.4	442
13	Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10202-10207.	7.1	438
14	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
15	Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 493-502.	17.8	370
16	Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science, 2020, 369, .	12.6	351
17	Deleterious Germline Mutations in Patients With Apparently Sporadic Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2017, 35, 3382-3390.	1.6	316
18	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294

#	Article	IF	CITATIONS
19	Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology, 2018, 155, 740-751.e2.	1.3	288
20	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	9.4	282
21	The Prevalence of BRCA2 Mutations in Familial Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 342-346.	2.5	255
22	Personalizing Cancer Treatment in the Age of Global Genomic Analyses: <i>PALB2</i> Gene Mutations and the Response to DNA Damaging Agents in Pancreatic Cancer. Molecular Cancer Therapeutics, 2011, 10, 3-8.	4.1	238
23	BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genetics in Medicine, 2015, 17, 569-577.	2.4	231
24	Update on Familial Pancreatic Cancer. Advances in Surgery, 2010, 44, 293-311.	1.3	224
25	Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nature Genetics, 2015, 47, 911-916.	21.4	224
26	Clinical Significance of the Genetic Landscape of Pancreatic Cancer and Implications for Identification of Potential Long-term Survivors. Clinical Cancer Research, 2012, 18, 6339-6347.	7.0	220
27	DNA Methylation Alterations in the Pancreatic Juice of Patients with Suspected Pancreatic Disease. Cancer Research, 2006, 66, 1208-1217.	0.9	207
28	The Early Detection of Pancreatic Cancer: What Will It Take to Diagnose and Treat Curable Pancreatic Neoplasia?. Cancer Research, 2014, 74, 3381-3389.	0.9	207
29	Increased Prevalence of Precursor Lesions in Familial Pancreatic Cancer Patients. Clinical Cancer Research, 2009, 15, 7737-7743.	7.0	195
30	Importance of Age of Onset in Pancreatic Cancer Kindreds. Journal of the National Cancer Institute, 2010, 102, 119-126.	6.3	193
31	Genetic susceptibility to pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 14-24.	2.7	192
32	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
33	PancPRO: Risk Assessment for Individuals With a Family History of Pancreatic Cancer. Journal of Clinical Oncology, 2007, 25, 1417-1422.	1.6	183
34	Familial Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2009, 133, 365-374.	2.5	166
35	Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. Journal of the National Cancer Institute, 2015, 107, djv279.	6.3	152
36	Pancreatic Cancer Genetic Epidemiology Consortium. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 704-710.	2.5	133

#	Article	IF	CITATIONS
37	A multimodality test to guide the management of patients with a pancreatic cyst. Science Translational Medicine, 2019, 11, .	12.4	129
38	Identifying people at a high risk of developing pancreatic cancer. Nature Reviews Cancer, 2013, 13, 66-74.	28.4	127
39	Evidence for a major gene influencing risk of pancreatic cancer. Genetic Epidemiology, 2002, 23, 133-149.	1.3	123
40	An Absolute Risk Model to Identify Individuals at Elevated Risk for Pancreatic Cancer in the General Population. PLoS ONE, 2013, 8, e72311.	2.5	120
41	Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis. Journal of the National Cancer Institute, 2020, 112, 1162-1169.	6.3	114
42	Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis, 2012, 33, 1384-1390.	2.8	102
43	Winner's Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data. PLoS Genetics, 2016, 12, e1006493.	3.5	98
44	Heritability Analysis of Spherical Equivalent, Axial Length, Corneal Curvature, and Anterior Chamber Depth in the Beaver Dam Eye Study. JAMA Ophthalmology, 2009, 127, 649.	2.4	91
45	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
46	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	1.8	88
47	Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome. Nature Communications, 2016, 7, 11843.	12.8	86
48	Having Pancreatic Cancer with Tumoral Loss of ATM and Normal TP53 Protein Expression Is Associated with a Poorer Prognosis. Clinical Cancer Research, 2014, 20, 1865-1872.	7.0	81
49	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	12.8	75
50	The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. Journal of Clinical Oncology, 2022, 40, 3257-3266.	1.6	69
51	Elevated Cancer Mortality in the Relatives of Patients with Pancreatic Cancer. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2829-2834.	2.5	65
52	Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. Journal of Clinical Oncology, 2019, 37, 1070-1080.	1.6	65
53	Family history as a marker of platinum sensitivity in pancreatic adenocarcinoma. Cancer Chemotherapy and Pharmacology, 2015, 76, 489-498.	2.3	59
54	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	6.3	59

#	Article	IF	CITATIONS
55	<scp><i>TERT</i></scp> gene harbors multiple variants associated with pancreatic cancer susceptibility. International Journal of Cancer, 2015, 137, 2175-2183.	5.1	57
56	Surgical Outcomes After Pancreatic Resection of Screening-Detected Lesions in Individuals at High Risk for Developing Pancreatic Cancer. Journal of Gastrointestinal Surgery, 2020, 24, 1101-1110.	1.7	55
57	Familial and sporadic pancreatic cancer share the same molecular pathogenesis. Familial Cancer, 2015, 14, 95-103.	1.9	54
58	Support for Polygenic Influences on Ocular Refractive Error. , 2005, 46, 442.		51
59	Absence of germline BRCA1 mutations in familial pancreatic cancer patients. Cancer Biology and Therapy, 2009, 8, 131-135.	3.4	50
60	Quantifying the Genetic Correlation between Multiple Cancer Types. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1427-1435.	2.5	48
61	Analysis of Heritability and Genetic Architecture of Pancreatic Cancer: A PanC4 Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1238-1245.	2.5	48
62	Confirmation of Linkage to Ocular Refraction on Chromosome 22q and Identification of a Novel Linkage Region on 1q. JAMA Ophthalmology, 2007, 125, 80.	2.4	47
63	Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms. Gastroenterology, 2019, 156, 1905-1913.	1.3	47
64	Exome Array Analysis Identifies CAV1/CAV2 as a Susceptibility Locus for Intraocular Pressure. Investigative Ophthalmology and Visual Science, 2015, 56, 544-551.	3.3	43
65	Absence of Deleterious Palladin Mutations in Patients with Familial Pancreatic Cancer: Table 1 Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1328-1330.	2.5	39
66	Risk of Pancreatic Cancer Among Individuals With Pathogenic Variants in the <i>ATM</i> Gene. JAMA Oncology, 2021, 7, 1664.	7.1	39
67	Exome-Wide Association Study of Pancreatic Cancer Risk. Gastroenterology, 2018, 154, 719-722.e3.	1.3	38
68	Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 1592-1599.	3.4	36
69	A histomorphologic comparison of familial and sporadic pancreatic cancers. Pancreatology, 2015, 15, 387-391.	1.1	32
70	Gene Variants That Affect Levels of Circulating Tumor Markers Increase Identification of Patients With Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 1161-1169.e5.	4.4	31
71	Genomic analysis identifies frequent deletions of Dystrophin in olfactory neuroblastoma. Nature Communications, 2018, 9, 5410.	12.8	30
72	Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. Journal of Pathology, 2020, 252, 252-262.	4.5	30

#	Article	IF	CITATIONS
73	Association of Common Susceptibility Variants of Pancreatic Cancer in Higher-Risk Patients: A PACGENE Study. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1185-1191.	2.5	29
74	Pancreatic cancer: a growing burden. The Lancet Gastroenterology and Hepatology, 2019, 4, 895-896.	8.1	29
75	Inherited pancreatic cancer. Chinese Clinical Oncology, 2017, 6, 58-58.	1.2	26
76	Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25, ddw300.	2.9	24
77	The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas, 2021, 50, 1123-1130.	1.1	24
78	The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Modern Pathology, 2020, 33, 2544-2563.	5.5	23
79	Using Quantitative Seroproteomics to Identify Antibody Biomarkers in Pancreatic Cancer. Cancer Immunology Research, 2016, 4, 225-233.	3.4	21
80	Determinants and prognostic value of quality of life in patients with pancreatic ductal adenocarcinoma. European Journal of Cancer, 2018, 92, 20-32.	2.8	21
81	Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Modern Pathology, 2019, 32, 1806-1813.	5.5	21
82	Agnostic Pathway/Gene Set Analysis of Genome-Wide Association Data Identifies Associations for Pancreatic Cancer. Journal of the National Cancer Institute, 2019, 111, 557-567.	6.3	21
83	Linkage analysis of chromosome 4 in families with familial pancreatic cancer. Cancer Biology and Therapy, 2007, 6, 320-323.	3.4	20
84	Incorporating tumor immunohistochemical markers in BRCA1 and BRCA2 carrier prediction. Breast Cancer Research, 2008, 10, 401.	5.0	20
85	Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 999-1008.	2.5	19
86	Linkage Analysis of Quantitative Refraction and Refractive Errors in the Beaver Dam Eye Study. , 2011, 52, 5220.		18
87	Refraction and Change in Refraction Over a 20-Year Period in the Beaver Dam Eye Study. , 2018, 59, 4518.		18
88	Associations between Genetically Predicted Blood Protein Biomarkers and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1501-1508.	2.5	18
89	Polygenic Effects and Cigarette Smoking Account for a Portion of the Familial Aggregation of Nuclear Sclerosis. American Journal of Epidemiology, 2005, 161, 707-713.	3.4	17
90	Familial pancreatic cancer: from genes to improved patient care. Expert Review of Gastroenterology and Hepatology, 2007, 1, 81-88.	3.0	16

#	Article	IF	CITATIONS
91	A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer. Genome Medicine, 2021, 13, 15.	8.2	15
92	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	6.2	15
93	Novel Models of Genetic Education and Testing for Pancreatic Cancer Interception: Preliminary Results from the GENERATE Study. Cancer Prevention Research, 2021, 14, 1021-1032.	1.5	15
94	A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genetics, 2019, 15, e1008344.	3.5	13
95	Detection of Circulating Tumor DNA in Patients with Pancreatic Cancer Using Digital Next-Generation Sequencing. Journal of Molecular Diagnostics, 2020, 22, 748-756.	2.8	11
96	Endoplasmic stressâ€inducing variants in <scp><i>CPB1</i></scp> and <scp><i>CPA1</i></scp> and risk of pancreatic cancer: A caseâ€control study and metaâ€analysis. International Journal of Cancer, 2022, 150, 1123-1133.	5.1	11
97	Haplotype Counting for Sensitive Chimerism Testing. Journal of Molecular Diagnostics, 2017, 19, 427-436.	2.8	10
98	Challenges of the current precision medicine approach for pancreatic cancer: A single institution experience between 2013 and 2017. Cancer Letters, 2021, 497, 221-228.	7.2	10
99	Environmental covariates: Effects on the power of sibâ€pair linkage methods. Genetic Epidemiology, 1999, 17, S643-8.	1.3	9
100	Identification of functional genetic variation in exome sequence analysis. BMC Proceedings, 2011, 5, S13.	1.6	9
101	Transflip mutations produce deletions in pancreatic cancer. Genes Chromosomes and Cancer, 2015, 54, 472-481.	2.8	9
102	Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies. American Journal of Clinical Nutrition, 2021, 114, 1408-1417.	4.7	9
103	Intraductal papillary mucinous neoplasm in a neonate with congenital hyperinsulinism and a de novo germline SKIL gene mutation. Pancreatology, 2015, 15, 194-196.	1.1	8
104	Alterations of type II classical cadherin, cadherinâ€10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes and Cancer, 2017, 56, 427-435.	2.8	8
105	Smoking Modifies Pancreatic Cancer Risk Loci on 2q21.3. Cancer Research, 2021, 81, 3134-3143.	0.9	8
106	Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent. Molecular Vision, 2016, 22, 783-96.	1.1	8
107	Pancreatic cancer pathology viewed in the light of evolution. Cancer and Metastasis Reviews, 2021, 40, 661-674.	5.9	7
108	Two-Sample Mendelian Randomization Analysis of Associations Between Periodontal Disease and Risk of Cancer. JNCI Cancer Spectrum, 2021, 5, pkab037.	2.9	7

Alison P Klein

#	Article	IF	CITATIONS
109	Impact of Sixteen Established Pancreatic Cancer Susceptibility Loci in American Jews. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1540-1548.	2.5	6
110	Screening for Pancreatic Cancer—Is There Hope?. JAMA Internal Medicine, 2019, 179, 1313.	5.1	6
111	Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2735-2739.	2.5	6
112	Large-scale cross-cancer fine-mapping of the 5p15.33 region reveals multiple independent signals. Human Genetics and Genomics Advances, 2021, 2, 100041.	1.7	6
113	Functional CDKN2A assay identifies frequent deleterious alleles misclassified as variants of uncertain significance. ELife, 2022, 11, .	6.0	6
114	Investigation of altering single-nucleotide polymorphism density on the power to detect trait loci and frequency of false positive in nonparametric linkage analyses of qualitative traits. BMC Genetics, 2005, 6, S20.	2.7	5
115	Genome-Wide Gene–Diabetes and Gene–Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1784-1791.	2.5	5
116	Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk. Cancer Research, 2020, 80, 4004-4013.	0.9	5
117	A risk prediction tool for individuals with a family history of breast, ovarian, or pancreatic cancer: BRCAPANCPRO. British Journal of Cancer, 2021, 125, 1712-1717.	6.4	4
118	Overview of Linkage Analysis: Application to Pancreatic Cancer. , 2005, 103, 329-342.		3
119	Exome Array Analysis of Nuclear Lens Opacity. Ophthalmic Epidemiology, 2018, 25, 215-219.	1.7	3
120	Association analysis of exome variants and refraction, axial length, and corneal curvature in a European-American population. Human Mutation, 2018, 39, 1973-1979.	2.5	3
121	Familial pancreatic cancer: who should be considered for genetic testing?. Irish Journal of Medical Science, 2021, , 1.	1.5	3
122	Germline sequence analysis of RABL3 in a large series of pancreatic ductal adenocarcinoma patients reveals no evidence of deleterious variants. Genes Chromosomes and Cancer, 2021, 60, 559-564.	2.8	3
123	Abstract 1591: Large-scale transcriptome-wide association study (TWAS) identifies novel candidate susceptibility genes for pancreatic cancer. , 2019, , .		3
124	Abstract 1591: Large-scale transcriptome-wide association study (TWAS) identifies novel candidate susceptibility genes for pancreatic cancer. , 2019, , .		3
125	Familial Pancreatic Cancer. , 2018, , 553-572.		2
126	Long-term analysis of 2 prospective studies that incorporate mitomycin C into an adjuvant chemoradiation regimen for pancreatic and periampullary cancers. Advances in Radiation Oncology, 2018, 3, 42-51.	1.2	2

#	Article	IF	CITATIONS
127	A pooled genome-wide association study identifies pancreatic cancer susceptibility loci on chromosome 19p12 and 19p13.3 in the full-Jewish population. Human Genetics, 2021, 140, 309-319.	3.8	2
128	A New Fast Phasing Method Based On Haplotype Subtraction. Journal of Molecular Diagnostics, 2019, 21, 427-436.	2.8	1
129	Examination of ATM, BRCA1, and BRCA2 promoter methylation in patients with pancreatic cancer. Pancreatology, 2021, 21, 938-941.	1.1	1
130	RAD51B Harbors Germline Mutations Associated With Pancreatic Ductal Adenocarcinoma. JCO Precision Oncology, 2022, , .	3.0	1
131	Multipoint Linkage Analysis Under Heterogeneity: Incorporation of Parametric and Nonparametric Approaches. Genetic Epidemiology, 2001, 21, S55-60.	1.3	0
132	Familial Pancreatic Cancer. , 2016, , 1-20.		0
133	A Pathway Analysis of Hereditary Hemochromatosis-related Genes and Pancreatic Ductal Adenocarcinoma Risk (FS11-05-19). Current Developments in Nutrition, 2019, 3, nzz037.FS11-05-19.	0.3	0
134	Bayesian copy number detection and association in large-scale studies. BMC Cancer, 2020, 20, 856.	2.6	0