
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491579/publications.pdf Version: 2024-02-01

KUN HUANC

#	Article	IF	CITATIONS
1	Temperatureâ€Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Coâ€Doped Porous Carbon Nanosphere Supported Pd Nanoparticles. Small, 2022, 18, e2106893.	10.0	25
2	EDTA Modified Hollow Microporous Organic Nanospheres for Enhancing Adsorption of Metal Ions. ChemistrySelect, 2022, 7, .	1.5	0
3	Honeycomb-like nitrogen-doped porous carbon nanosphere encapsulated ultrafine Pd nanoparticles for selectively catalyzing hydrogenation of cinnamaldehyde in water. Microporous and Mesoporous Materials, 2022, 336, 111865.	4.4	4
4	Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525, 112343.	2.0	4
5	Palladium-encapsulated hollow porous carbon nanospheres as nanoreactors for highly efficient and size-selective catalysis. Carbon, 2021, 175, 307-311.	10.3	20
6	In situ encapsulated ultrafine Pd nanoparticles in nitrogen-doped porous carbon derived from hyper-crosslinked polymers effectively catalyse hydrogenation. Journal of Catalysis, 2021, 396, 342-350.	6.2	29
7	In Situ Synthesis of Incompatible Polymers within Hollow Porous Organic Nanosphere Networks for Cascade Reactions. Macromolecular Chemistry and Physics, 2021, 222, 2100009.	2.2	5
8	Ethylenediamineâ€Modified Hollow Porous Nanospheres for Effective Removal of Chromium (VI). ChemistrySelect, 2021, 6, 5711-5718.	1.5	3
9	Confined synthesis of homogeneous Tetrakis(triphenyl phosphine) palladium within hollow porous polymeric nanospheres for catalysis application. Microporous and Mesoporous Materials, 2021, 322, 111155.	4.4	5
10	Synthesis of yolk-shell magnetic porous organic nanospheres supported Pd catalyst for oxidation of alcohols and Heck reactions. Chemical Engineering Journal, 2021, 423, 130237.	12.7	12
11	Encapsulation of heteropolyacids within hollow microporous polymer nanospheres for sustainable esterification reaction. Reactive and Functional Polymers, 2021, 169, 105063.	4.1	2
12	Zn–Porphyrinâ€Functionalized Hollow Microporous Organic Nanospheres and Their Application for the Oxidative Coupling of Thiols. Macromolecular Chemistry and Physics, 2021, 222, 2000375.	2.2	5
13	Copper complex supported on hollow porous nanosphere frameworks with improved catalytic activity for epoxidation of olefins. Microporous and Mesoporous Materials, 2020, 294, 109890.	4.4	5
14	FeO nanoparticles encapsulated in hollow porous nanosphere frameworks for efficient degradation of methyl orange. Reactive and Functional Polymers, 2020, 153, 104614.	4.1	9
15	Room-Temperature Synthesis of Hollow Carbazole-Based Covalent Triazine Polymers with Multiactive Sites for Efficient Iodine Capture-Catalysis Cascade Application. ACS Applied Polymer Materials, 2020, 2, 3704-3713.	4.4	16
16	Hollow porous organic nanospheres for anchoring Pd(PPh ₃) ₄ through a co-hyper-crosslinking mediated self-assembly strategy. New Journal of Chemistry, 2020, 44, 6661-6666.	2.8	7
17	Carboxyl group functionalized hollow microporous organic nanospheres for efficient catalysis and adsorption. Microporous and Mesoporous Materials, 2019, 274, 245-250.	4.4	3
18	Nanoparticle-Encapsulated Hollow Porous Polymeric Nanosphere Frameworks as Highly Active and Tunable Size-Selective Catalysts. ACS Macro Letters, 2019, 8, 1263-1267.	4.8	25

#	Article	IF	CITATIONS
19	Ag nanoparticles encapsulated in carboxyl-functionalized hollow microporous organic nanospheres for highly efficient catalysis applications. Applied Catalysis A: General, 2019, 588, 117276.	4.3	15
20	Novel activated N-doped hollow microporous carbon nanospheres from pyrrole-based hyper-crosslinking polystyrene for supercapacitors. Reactive and Functional Polymers, 2019, 143, 104326.	4.1	13
21	Amino- and sulfo-bifunctionalized hyper-crosslinked organic nanotube frameworks as efficient catalysts for one-pot cascade reactions. New Journal of Chemistry, 2019, 43, 2269-2273.	2.8	6
22	Synthesis of carbazole-based microporous polymer networks via an oxidative coupling mediated self-assembly strategy: from morphology regulation to application analysis. Polymer Chemistry, 2019, 10, 1489-1497.	3.9	2
23	Synthesis of Yolk–Shell Magnetic Porous Organic Nanospheres for Efficient Removal of Methylene Blue from Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 2924-2932.	6.7	37
24	Construction of Microporous Organic Nanotubes Based on Scholl Reaction. Journal of Physical Chemistry C, 2018, 122, 8933-8940.	3.1	9
25	Acid–base bifunctional amphiphilic organic nanotubes as a catalyst for one-pot cascade reactions in water. New Journal of Chemistry, 2018, 42, 1368-1372.	2.8	30
26	Oxo-vanadium (IV) complex supported by microporous organic nanotube frameworks: A high selective heterogeneous catalyst for the oxidation of thiols to disulfides. Microporous and Mesoporous Materials, 2018, 255, 103-109.	4.4	19
27	Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese Journal of Polymer Science (English Edition), 2018, 36, 98-105.	3.8	10
28	Fabrication of sulphonated hollow porous nanospheres and their remarkably improved catalytic performance for biodiesel synthesis. Reactive and Functional Polymers, 2018, 132, 98-103.	4.1	6
29	A Polymerization utting Strategy: Selfâ€Protection Synthesis of Thiolâ€Based Nanoporous Adsorbents for Efficient Mercury Removal. Chemistry - A European Journal, 2018, 24, 14436-14441.	3.3	8
30	Aminoâ€functionalized hollow microporous organic nanospheres for pd supported catalysis and I ₂ uptake. Journal of Polymer Science Part A, 2018, 56, 2045-2052.	2.3	18
31	Two-step tandem synthetic strategy for hyper-cross-linking hollow microporous organic nanospheres. Polymer, 2018, 151, 92-100.	3.8	3
32	Preparation of multifunctional hollow microporous organic nanospheres <i>via</i> a one-pot hyper-cross-linking mediated self-assembly strategy. Polymer Chemistry, 2018, 9, 4017-4024.	3.9	19
33	Acid-Base Bifunctional Microporous Organic Nanotube Networks for Cascade Reactions. Macromolecular Chemistry and Physics, 2017, 218, 1600431.	2.2	15
34	Organic ligands incorporated hypercrosslinked microporous organic nanotube frameworks for accelerating mass transfer in efficient heterogeneous catalysis. Applied Catalysis A: General, 2017, 541, 112-119.	4.3	23
35	Thiolâ€Functionalized Organic Porous Polymers as a Support for Gold Nanoparticles and Its Catalytic Applications. Macromolecular Chemistry and Physics, 2017, 218, 1700044.	2.2	10
36	Amine-Functionalized Microporous Organic Nanotube Frameworks Supported Pt and Pd Catalysts for Selective Oxidation of Alcohol and Heck Reactions. Journal of Physical Chemistry C, 2017, 121, 12771-12779.	3.1	26

#	Article	IF	CITATIONS
37	Fe-Porphyrin functionalized microporous organic nanotube networks and their application for the catalytic olefination of aldehydes and carbene insertion into N–H bonds. Polymer Chemistry, 2017, 8, 3721-3730.	3.9	17
38	"Click Chemistry―Mediated Functional Microporous Organic Nanotube Networks for Heterogeneous Catalysis. Organic Letters, 2017, 19, 5776-5779.	4.6	19
39	Hyper-Cross-Linking Mediated Self-Assembly Strategy To Synthesize Hollow Microporous Organic Nanospheres. ACS Applied Materials & Interfaces, 2017, 9, 35209-35217.	8.0	41
40	Honeycomb-like Bicontinuous P-Doped Porous Polymers from Hyper-Cross-Linking of Diblock Copolymers for Heterogeneous Catalysis. Macromolecules, 2017, 50, 9626-9635.	4.8	30
41	Functionalized microporous organic nanotube networks as a new platform for highly efficient heterogeneous catalysis. Polymer Chemistry, 2016, 7, 4975-4982.	3.9	21
42	Facile synthesis of Au@PNIPAMâ€ <i>b</i> â€₽Py nanocomposites with thermosensitive and photothermal effects. Journal of Polymer Science Part A, 2016, 54, 3079-3085.	2.3	6
43	Controlledâ€Release System of Small Molecules Triggered by the Photothermal Effect of Polypyrrole. Macromolecular Rapid Communications, 2016, 37, 149-154.	3.9	22
44	Well-dispersed gold nanoparticles anchored into thiol-functionalized hierarchically porous materials for catalytic applications. Microporous and Mesoporous Materials, 2016, 229, 1-7.	4.4	26
45	Synthesis of magnetic microporous organic nanotube networks for adsorption application. RSC Advances, 2016, 6, 87745-87752.	3.6	11
46	Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Advances, 2016, 6, 39933-39939.	3.6	26
47	Three-Arm Branched Microporous Organic Nanotube Networks. Macromolecular Rapid Communications, 2016, 37, 1566-1572.	3.9	10
48	Microporous organic nanotube network supported acid and base catalyst system for one-pot cascade reactions. New Journal of Chemistry, 2016, 40, 7282-7285.	2.8	19
49	Synthesis of triphenylphosphine-based microporous organic nanotube framework supported Pd catalysts with excellent catalytic activity. Polymer Chemistry, 2016, 7, 7408-7415.	3.9	32
50	Soluble organic nanotubes for catalytic systems. Nanotechnology, 2016, 27, 115603.	2.6	6
51	In Situ Formation of Dualâ€Phase Thermosensitive Ultrasmall Gold Nanoparticles. Chemistry - A European Journal, 2015, 21, 10220-10225.	3.3	9
52	Synthesis and characterization of amphiphilic triblock Copolymers with Identical compositions but different block sequences. RSC Advances, 2014, 4, 43682-43690.	3.6	2
53	Acid- and base-functionalized core-confined bottlebrush copolymer catalysts for one-pot cascade reactions. Chemical Communications, 2014, 50, 14778-14781.	4.1	33
54	Robust superhydrophilic coatings by electropolymerization of sulfonated pyrrole. Journal of Applied Polymer Science, 2013, 127, 257-260.	2.6	5

#	Article	IF	CITATIONS
55	Synthesis of Degradable Organic Nanotubes by Bottlebrush Molecular Templating. ACS Macro Letters, 2012, 1, 892-895.	4.8	28
	Synthesis of amphiphilic A ₂ B starâ€shaped copolymers of polystyreneâ€ <i>b</i> â€{poly(ethylene) 1	5 -1	0
56	2012, 50, 2635-2640.	2.3	12
	Synthesis of branchâ€ringâ€branch tadpoleâ€shaped [linearâ€poly(εâ€caprolactone)]â€ <i>b</i> â€[cyclicâ€poly		
57	ringâ€opening polymerization. Journal of Polymer Science Part A, 2012, 50, 3095-3103.	2.3	12
58	De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Biomacromolecules, 2011, 12, 2327-2334.	5.4	52
59	Charge and Size Selective Molecular Transport by Amphiphilic Organic Nanotubes. Journal of the American Chemical Society, 2011, 133, 16726-16729.	13.7	76
60	Synthesis of Segmented Polylactide Molecular Brushes and Their Transformation to Open-End Nanotubes. Macromolecules, 2010, 43, 6632-6638.	4.8	56
61	Organosoluble polypyrrole nanotubes from core–shell bottlebrush copolymers. Chemical Communications, 2010, 46, 6326.	4.1	40
62	Well-Defined Organic Nanotubes from Multicomponent Bottlebrush Copolymers. Journal of the American Chemical Society, 2009, 131, 6880-6885.	13.7	213
63	One-step synthesis of 3D dendritic gold/polypyrrole nanocomposites via a self-assembly method. Nanotechnology, 2006, 17, 283-288.	2.6	40
64	Preparation of Highly Conductive, Self-Assembled Gold/Polyaniline Nanocables and Polyaniline Nanotubes. Chemistry - A European Journal, 2006, 12, 5314-5319.	3.3	97
65	Polyaniline hollow microspheres constructed with their own self-assembled nanofibers. Journal of Applied Polymer Science, 2006, 100, 3050-3054.	2.6	33
66	Electronic transport in single polyaniline and polypyrrole microtubes. Physical Review B, 2005, 71, .	3.2	87
67	Synthesis and electrical properties of freestanding film of azobenzene side-chain polyaniline. Applied Physics Letters, 2004, 84, 1898-1900.	3.3	3
68	Synthesis of Highly Conducting Polyaniline with Photochromic Azobenzene Side Groups. Macromolecules, 2002, 35, 8653-8655.	4.8	39
69	Hollow Microporous Organic Nanospheres with an Organocatalyst and a Metal Catalyst for Tandem Reactions. Macromolecular Chemistry and Physics, 0, , 2100276.	2.2	1
70	Ultrafine Palladium Embedded in Nâ€doped Porous Carbon Material from Carbazoleâ€covalent Triazine Polymer for Green Suzukiâ€Miyaura Coupling Reaction. ChemNanoMat, 0, , .	2.8	2