
Guy Lenaers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8491188/publications.pdf Version: 2024-02-01

CUVIENAEDS

#	Article	IF	CITATIONS
1	<i>NR2F1</i> database: 112 variants and 84 patients support refining the clinical synopsis of Bosch–Boonstra–Schaaf optic atrophy syndrome. Human Mutation, 2022, 43, 128-142.	2.5	12
2	Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet Journal of Rare Diseases, 2022, 17, 197.	2.7	6
3	A homozygous nonsense HECW2 variant is associated with neurodevelopmental delay and intellectual disability. European Journal of Medical Genetics, 2022, 65, 104515.	1.3	1
4	Diagnostic and Therapeutic Perspectives Associated to Cobalamin-Dependent Metabolism and Transcobalamins' Synthesis in Solid Cancers. Nutrients, 2022, 14, 2058.	4.1	5
5	Altered Mitochondrial Opa1-Related Fusion in Mouse Promotes Endothelial Cell Dysfunction and Atherosclerosis. Antioxidants, 2022, 11, 1078.	5.1	10
6	Next-Generation Sequencing Identifies Novel PMPCA Variants in Patients with Late-Onset Dominant Optic Atrophy. Genes, 2022, 13, 1202.	2.4	0
7	Dominant optic atrophy: Culprit mitochondria in the optic nerve. Progress in Retinal and Eye Research, 2021, 83, 100935.	15.5	48
8	A homozygous MPZL2 deletion is associated with non syndromic hearing loss in a moroccan family. International Journal of Pediatric Otorhinolaryngology, 2021, 140, 110481.	1.0	8
9	A plasma metabolomic signature of Leber hereditary optic neuropathy showing taurine and nicotinamide deficiencies. Human Molecular Genetics, 2021, 30, 21-29.	2.9	14
10	Pathogenic <i>NR2F1</i> variants cause a developmental ocular phenotype recapitulated in a mutant mouse model. Brain Communications, 2021, 3, fcab162.	3.3	13
11	Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy. Molecular Neurodegeneration, 2021, 16, 12.	10.8	13
12	Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Frontiers in Neurology, 2021, 12, 602979.	2.4	12
13	Secondary coenzyme Q deficiency in neurological disorders. Free Radical Biology and Medicine, 2021, 165, 203-218.	2.9	10
14	Are Your Mitochondria Ready for a Space Odyssey?. Trends in Endocrinology and Metabolism, 2021, 32, 193-195.	7.1	1
15	Dominant <i>ACO2</i> mutations are a frequent cause of isolated optic atrophy. Brain Communications, 2021, 3, fcab063.	3.3	16
16	Expanding the <i>FDXR</i> -Associated Disease Phenotype: Retinal Dystrophy Is a Recurrent Ocular Feature. , 2021, 62, 2.		7
17	ACO2 clinicobiological dataset with extensive phenotype ontology annotation. Scientific Data, 2021, 8, 205.	5.3	2
18	Characterization of SSBP1-related optic atrophy and foveopathy. Scientific Reports, 2021, 11, 18703.	3.3	6

#	Article	IF	CITATIONS
19	Tear metabolomics highlights new potential biomarkers for differentiating between Sjögren's syndrome and other causes of dry eye. Ocular Surface, 2021, 22, 110-116.	4.4	8
20	A ROD–CONE DYSTROPHY IS SYSTEMATICALLY ASSOCIATED TO THE RTN4IP1 RECESSIVE OPTIC ATROPHY. Retina, 2021, 41, 1771-1779.	1.7	5
21	Clinical and genetic investigations of three Moroccan families with retinitis pigmentosa phenotypes. Molecular Vision, 2021, 27, 17-25.	1.1	1
22	The Long Non-Coding RNA SAMMSON Is a Regulator of Chemosensitivity and Metabolic Orientation in MCF-7 Doxorubicin-Resistant Breast Cancer Cells. Biology, 2021, 10, 1156.	2.8	12
23	First characterization of LHON pedigrees in North Africa. Eye, 2020, 34, 2138-2139.	2.1	1
24	Dysfunctional T Cell Mitochondria Lead to Premature Aging. Trends in Molecular Medicine, 2020, 26, 799-800.	6.7	5
25	Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nature Communications, 2020, 11, 4589.	12.8	30
26	Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity. Human Molecular Genetics, 2020, 29, 1319-1329.	2.9	17
27	A Plasma Metabolomic Profiling of Exudative Age-Related Macular Degeneration Showing Carnosine and Mitochondrial Deficiencies. Journal of Clinical Medicine, 2020, 9, 631.	2.4	22
28	A Data Mining Metabolomics Exploration of Glaucoma. Metabolites, 2020, 10, 49.	2.9	25
29	Lactic Acidosis Together with GM-CSF and M-CSF Induces Human Macrophages toward an Inflammatory Protumor Phenotype. Cancer Immunology Research, 2020, 8, 383-395.	3.4	48
30	Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy. Neurology: Genetics, 2020, 6, e428.	1.9	31
31	OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet Journal of Rare Diseases, 2019, 14, 214.	2.7	39
32	Nicotinamide Deficiency in Primary Open-Angle Glaucoma. , 2019, 60, 2509.		61
33	Lipidomics Reveals Triacylglycerol Accumulation Due to Impaired Fatty Acid Flux in <i>Opa1</i> -Disrupted Fibroblasts. Journal of Proteome Research, 2019, 18, 2779-2790.	3.7	9
34	Warburg-like effect is a hallmark of complex I assembly defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2475-2489.	3.8	13
35	The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling. Scientific Reports, 2019, 9, 6107.	3.3	7
36	Clinical utility gene card for: inherited optic neuropathies including next-generation sequencing-based approaches. European Journal of Human Genetics, 2019, 27, 494-502.	2.8	29

#	Article	IF	CITATIONS
37	Next generation sequencing in family with MNGIE syndrome associated to optic atrophy: Novel homozygous POLG mutation in the C-terminal sub-domain leading to mtDNA depletion. Clinica Chimica Acta, 2019, 488, 104-110.	1.1	12
38	eKLIPse: a sensitive tool for the detection and quantification of mitochondrial DNA deletions from next-generation sequencing data. Genetics in Medicine, 2019, 21, 1407-1416.	2.4	38
39	Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy. Journal of Clinical Investigation, 2019, 130, 143-156.	8.2	44
40	OPA1: How much do we know to approach therapy?. Pharmacological Research, 2018, 131, 199-210.	7.1	44
41	OPA1 gene therapy prevents retinal ganglion cell loss in a Dominant Optic Atrophy mouse model. Scientific Reports, 2018, 8, 2468.	3.3	52
42	AP4 deficiency. Neurology: Genetics, 2018, 4, e217.	1.9	28
43	Current mechanistic insights into the CCCP-induced cell survival response. Biochemical Pharmacology, 2018, 148, 100-110.	4.4	55
44	Reply: The expanding neurological phenotype of DNM1L-related disorders. Brain, 2018, 141, e29-e29.	7.6	5
45	Neurologic Phenotypes Associated With Mutations in <i>RTN4IP1</i> (<i>OPA10</i>) in Children and Young Adults. JAMA Neurology, 2018, 75, 105.	9.0	26
46	A Plasma Metabolomic Signature Involving Purine Metabolism in Human Optic Atrophy 1 (<i>OPA1</i>)-Related Disorders. , 2018, 59, 185.		21
47	A Metabolomics Profiling of Glaucoma Points to Mitochondrial Dysfunction, Senescence, and Polyamines Deficiency. , 2018, 59, 4355.		51
48	A Plasma Metabolomic Signature of the Exfoliation Syndrome Involves Amino Acids, Acylcarnitines, and Polyamines. , 2018, 59, 1025.		18
49	The Metabolomic Bioenergetic Signature of Opa1-Disrupted Mouse Embryonic Fibroblasts Highlights Aspartate Deficiency. Scientific Reports, 2018, 8, 11528.	3.3	20
50	OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. Cell Reports, 2017, 19, 2557-2571.	6.4	158
51	Autophagy controls the pathogenicity of <i><scp>OPA</scp>1</i> mutations in dominant optic atrophy. Journal of Cellular and Molecular Medicine, 2017, 21, 2284-2297.	3.6	30
52	A Nontargeted UHPLC-HRMS Metabolomics Pipeline for Metabolite Identification: Application to Cardiac Remote Ischemic Preconditioning. Analytical Chemistry, 2017, 89, 2138-2146.	6.5	43
53	Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family. Molecular Biology Reports, 2017, 44, 429-434.	2.3	10
54	Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain, 2017, 140, 2586-2596.	7.6	100

#	Article	IF	CITATIONS
55	Homozygous mutations in PJVK and MYO15A genes associated with non-syndromic hearing loss in Moroccan families. International Journal of Pediatric Otorhinolaryngology, 2017, 101, 25-29.	1.0	18
56	Targeted Metabolomics Reveals Early Dominant Optic Atrophy Signature in Optic Nerves of <i>Opa1</i> ^{delTTAG/+} Mice. , 2017, 58, 812.		22
57	Novel compound heterozygous MYO7A mutations in Moroccan families with autosomal recessive non-syndromic hearing loss. PLoS ONE, 2017, 12, e0176516.	2.5	8
58	WFS1 in Optic Neuropathies: Mutation Findings in Nonsyndromic Optic Atrophy and Assessment of Clinical Severity. Ophthalmology, 2016, 123, 1989-1998.	5.2	46
59	Remote Ischemic Conditioning Influences Mitochondrial Dynamics. Shock, 2016, 45, 192-197.	2.1	35
60	Increased steroidogenesis promotes early-onset and severe vision loss in females with <i>OPA1</i> dominant optic atrophy. Human Molecular Genetics, 2016, 25, ddw117.	2.9	17
61	Biallelic Variants in UBA5 Reveal that Disruption of the UFM1 Cascade Can Result in Early-Onset Encephalopathy. American Journal of Human Genetics, 2016, 99, 695-703.	6.2	87
62	The metabolomic signature of Leber's hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain, 2016, 139, 2864-2876.	7.6	45
63	Martinique Crinkled Retinal Pigment Epitheliopathy. Ophthalmology, 2016, 123, 2196-2204.	5.2	4
64	Increased mitochondrial fusion in a autosomal recessive CMT2A family with mitochondrial GTPase mitofusin 2 mutations. Journal of the Peripheral Nervous System, 2016, 21, 365-369.	3.1	10
65	A dominant mutation in <i>MAPKAPK3</i> , an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Human Molecular Genetics, 2016, 25, 916-926.	2.9	13
66	OPA1-related disorders: Diversity of clinical expression, modes of inheritance and pathophysiology. Neurobiology of Disease, 2016, 90, 20-26.	4.4	45
67	Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies. Journal of Clinical Investigation, 2016, 126, 1023-1038.	8.2	14
68	Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model. PLoS ONE, 2016, 11, e0164066.	2.5	51
69	Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population. Human Mutation, 2015, 36, E2441-E2453.	2.5	13
70	Optic neuropathy, cardiomyopathy, cognitive disability in patients with a homozygous mutation in the nuclear <i>MTO1</i> and a mitochondrial <i>MTâ€TF</i> variant. American Journal of Medical Genetics, Part A, 2015, 167, 2366-2374.	1.2	22
71	A novel mutation of AFG3L2 might cause dominant optic atrophy in patients with mild intellectual disability. Frontiers in Genetics, 2015, 6, 311.	2.3	52
72	Recessive TBC1D24 Mutations Are Frequent in Moroccan Non-Syndromic Hearing Loss Pedigrees. PLoS ONE, 2015, 10, e0138072.	2.5	22

#	Article	IF	CITATIONS
73	In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. Mitochondrion, 2015, 23, 32-41.	3.4	18
74	Neuroradiological findings expand the phenotype of OPA1-related mitochondrial dysfunction. Journal of the Neurological Sciences, 2015, 349, 154-160.	0.6	17
75	A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family Gene, 2015, 574, 28-33.	2.2	21
76	Mutation in NDUFA13/GRIM19 leads to early onset hypotonia, dyskinesia and sensorial deficiencies, and mitochondrial complex I instability. Human Molecular Genetics, 2015, 24, 3948-3955.	2.9	42
77	Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies. American Journal of Human Genetics, 2015, 97, 754-760.	6.2	54
78	Early-onset Behr syndrome due to compound heterozygous mutations in OPA1. Brain, 2014, 137, e301-e301.	7.6	62
79	Mitochondrial fusion is frequent in skeletal muscle and supports excitation–contraction coupling. Journal of Cell Biology, 2014, 205, 179-195.	5.2	133
80	Impairment of Visual Function and Retinal ER Stress Activation in Wfs1-Deficient Mice. PLoS ONE, 2014, 9, e97222.	2.5	31
81	Defects in Mitochondrial Dynamics and Mitochondrial DNA Instability. , 2013, , 141-161.		1
82	Mitochondrial Fusion Dynamics in Skeletal Muscle of Healthy and Diseased Rat. Biophysical Journal, 2013, 104, 656a.	0.5	0
83	Why Mitochondria Must Fuse to Maintain Their Genome Integrity. Antioxidants and Redox Signaling, 2013, 19, 379-388.	5.4	47
84	Analysis of CLDN14 gene in deaf Moroccan patients with non-syndromic hearing loss. Gene, 2013, 523, 103-105.	2.2	11
85	Sensorineural hearing loss in OPA1-linked disorders. Brain, 2013, 136, e236-e236.	7.6	36
86	Genetic and molecular analysis of the CLDN14 gene in Moroccan family with non-syndromic hearing loss. Indian Journal of Human Genetics, 2013, 19, 331.	0.7	3
87	TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. Journal of Neurophysiology, 2012, 107, 3227-3234.	1.8	199
88	The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain, 2012, 135, 3599-3613.	7.6	94
89	Cataract as a Phenotypic Marker for a Mutation in ^{WFS1} , the Wolfram Syndrome Gene. European Journal of Ophthalmology, 2012, 22, 254-258.	1.3	9
90	Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss. Biochemical and Biophysical Research Communications, 2012, 419, 643-647.	2.1	16

#	Article	IF	CITATIONS
91	Dominant optic atrophy. Orphanet Journal of Rare Diseases, 2012, 7, 46.	2.7	213
92	Neurological Diseases Associated with Mutations in the Mitochondrial Fusion Machinery. , 2011, , 169-196.		0
93	OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Research, 2011, 21, 12-20.	5.5	207
94	Microcebus murinus retina: A new model to assess prion-related neurotoxicity in primates. Neurobiology of Disease, 2010, 39, 211-220.	4.4	4
95	Characterization of Ca ²⁺ Signalling in Postnatal Mouse Retinal Ganglion Cells: Involvement of OPA1 in Ca ²⁺ Clearance. Ophthalmic Genetics, 2010, 31, 53-65.	1.2	29
96	OPA1 (dys)functions. Seminars in Cell and Developmental Biology, 2010, 21, 593-598.	5.0	50
97	Multi-system neurological disease is common in patients with OPA1 mutations. Brain, 2010, 133, 771-786.	7.6	385
98	OPA1-associated disorders: Phenotypes and pathophysiology. International Journal of Biochemistry and Cell Biology, 2009, 41, 1855-1865.	2.8	122
99	OPA1 functions in mitochondria and dysfunctions in optic nerve. International Journal of Biochemistry and Cell Biology, 2009, 41, 1866-1874.	2.8	72
100	Reversible optic neuropathy with <i>OPA1</i> exon 5b mutation. Annals of Neurology, 2008, 63, 667-671.	5.3	36
101	OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain, 2008, 131, 338-351.	7.6	454
102	Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 2007, 28, 14-22.	8.7	119
103	Effects of OPA1 mutations on mitochondrial morphology and apoptosis: Relevance to ADOA pathogenesis. Journal of Cellular Physiology, 2007, 211, 423-430.	4.1	128
104	OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death and Differentiation, 2007, 14, 682-692.	11.2	190
105	OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Experimental Cell Research, 2007, 313, 3800-3808.	2.6	90
106	Homozygous Deletion Related to Alu Repeats inRLBP1Causes Retinitis Punctata Albescens. , 2006, 47, 4719.		37
107	Mitochondrial dynamics and disease, OPA1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 500-509.	4.1	195
108	OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Annals of Neurology, 2005, 58, 958-963.	5.3	155

#	Article	IF	CITATIONS
109	Expression of the Opa1 Mitochondrial Protein in Retinal Ganglion Cells: Its Downregulation Causes Aggregation of the Mitochondrial Network. , 2005, 46, 4288.		68
110	OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. Journal of Medical Genetics, 2004, 41, e110-e110.	3.2	136
111	Gene structure and chromosomal localization of mouse Opa1 : its exclusion from the Bst locus. BMC Genetics, 2003, 4, 8.	2.7	14
112	Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis. Journal of Biological Chemistry, 2003, 278, 7743-7746.	3.4	987
113	OPA1 (Kjer Type) Dominant Optic Atrophy: A Novel Mitochondrial Disease. Molecular Genetics and Metabolism, 2002, 75, 97-107.	1.1	171
114	The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Letters, 2002, 523, 171-176.	2.8	348
115	What similarity between human and fission yeast proteins is required for orthology?. Yeast, 2002, 19, 1125-1126.	1.7	12
116	Mutation spectrum and splicing variants in the OPA1 gene. Human Genetics, 2001, 109, 584-591.	3.8	327
117	Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genetics, 2000, 26, 207-210.	21.4	1,275
118	Identification of <i>rpaP1-5</i> and <i>rpaP2-6</i> genes encoding two additional variants of the 60S acidic ribosomal proteins of <i>Schizosaccharomyces pombe</i> . Genome, 2000, 43, 205-207.	2.0	1
119	Cyclin B (p56cdc13) localization in the yeast Schizosaccharomyces pombe: An ultrastructural and immunocytochemical study. Biology of the Cell, 1996, 86, 1-10.	2.0	4
120	Molecular phylogeny of protists: origin and evolution of the Dinoflagellates. Giornale Botanico Italiano (Florence, Italy: 1962), 1992, 126, 713-725.	0.0	0
121	Molecular phylogeny of some polychaete annelids: An initial approach to the Atlantic-Mediterranean speciation problem. Journal of Molecular Evolution, 1992, 35, 429-35.	1.8	10
122	Activation of MPF in Fission Yeast. Novartis Foundation Symposium, 1992, 170, 50-71.	1.1	0
123	A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. Journal of Molecular Evolution, 1991, 32, 53-63.	1.8	114