Sarah Bergbreiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8490562/publications.pdf

Version: 2024-02-01

516710 477307 1,167 64 16 29 citations g-index h-index papers 64 64 64 1309 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flow separation sensing on airfoil using a 3D printed biomimetic artificial hair sensor. Bioinspiration and Biomimetics, 2022, 17, 046003.	2.9	4
2	Jumping robot bests biology by enhancing stored energy. Nature, 2022, 604, 627-628.	27.8	0
3	Scalable Minimally Actuated Leg Extension Bipedal Walker Based on 3D Passive Dynamics. , 2022, , .		5
4	Pendulum-based measurements reveal impact dynamics at the scale of a trap-jaw ant. Journal of Experimental Biology, 2021, 224, .	1.7	3
5	WhiskSight: A Reconfigurable, Vision-Based, Optical Whisker Sensing Array for Simultaneous Contact, Airflow, and Inertia Stimulus Detection. IEEE Robotics and Automation Letters, 2021, 6, 3357-3364.	5.1	7
6	Bioâ€Inspired Largeâ€Area Soft Sensing Skins to Measure UAV Wing Deformation in Flight. Advanced Functional Materials, 2021, 31, 2100679.	14.9	11
7	Fabrication and Characterization of 3D Printed Out-of-Plane Torsional Comb-Drive Actuators for Microrobotics. , $2021, \ldots$		3
8	Use of a MEMS Differential Pressure Sensor to Detect Ground, Ceiling, and Walls on Small Quadrotors. IEEE Robotics and Automation Letters, 2021, 6, 4568-4575.	5.1	10
9	Keeping It Simple: Bio-Inspired Threshold-Based Strain Sensing for Micro-Aerial Vehicles. , 2021, , .		2
10	Multimaterial 3D Printing for Microrobotic Mechanisms. Soft Robotics, 2020, 7, 59-67.	8.0	37
11	Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites. Advanced Materials, 2020, 32, e2002929.	21.0	70
12	Increasing the Energy Efficiency of NiTi Unimorph Actuators With a 3D-Printed Passive Layer. Journal of Microelectromechanical Systems, 2020, 29, 797-803.	2.5	4
13	Hierarchical Integration of Thin-Film NiTi Actuators Using Additive Manufacturing for Microrobotics. Journal of Microelectromechanical Systems, 2020, 29, 867-873.	2.5	9
14	Latch-based control of energy output in spring actuated systems. Journal of the Royal Society Interface, 2020, 17, 20200070.	3.4	35
15	Electromechanical Characterization of 3D Printable Conductive Elastomer for Soft Robotics. , 2020, , .		7
16	Rapid Prototyping of Microactuators by Integrating 3D Printed Polymeric Structures with NiTi Thin Film. , 2020, , .		10
17	A Two-Step Fabrication Method for 3D Printed Microactuators: Characterization and Actuated Mechanisms. Journal of Microelectromechanical Systems, 2020, 29, 544-552.	2.5	22
18	Viscoelastic legs for open-loop control of gram-scale robots. Bioinspiration and Biomimetics, 2020, 15, 055005.	2.9	5

#	Article	IF	Citations
19	Biomimetic Soft Airflow Sensor with Printed Ionogel Conductor., 2019,,.		10
20	Gesture Recognition Via Flexible Capacitive Touch Electrodes. , 2019, , .		4
21	Ground Reaction Force Sensing in Milligram-Scale Legged Microrobots. , 2019, , .		2
22	Measurement of shear forces during gripping tasks with a low-cost tactile sensing system. , 2019, , .		0
23	A Magnetically Transduced Whisker for Angular Displacement and Moment Sensing. , 2019, , .		8
24	Toward Autonomy in Sub-Gram Terrestrial Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 231-252.	11.8	54
25	Characterization of a piezoelectric MEMS actuator surface toward motion-enabled reconfigurable RF circuits. Journal of Micromechanics and Microengineering, 2018, 28, 035001.	2.6	6
26	The principles of cascading power limits in small, fast biological and engineered systems. Science, 2018, 360, .	12.6	187
27	Effect of finger geometries on strain response of interdigitated capacitor based soft strain sensors. Applied Physics Letters, 2018, 112, .	3.3	8
28	Contact-Resistive Sensing of Touch and Airflow Using A Rat Whisker. , 2018, , .		4
29	A Lightweight, Compliant, Contact-Resistance-Based Airflow Sensor for Quadcopter Ground Effect Sensing. , 2018, , .		9
30	Gait Exploration of Sub-2 g Robots Using Magnetic Actuation. IEEE Robotics and Automation Letters, 2017, 2, 34-40.	5.1	34
31	Development and Experimental Validation of a Non-Linear, All-Elastomer In-Plane Capacitive Pressure Sensor Model. IEEE Sensors Journal, 2017, 17, 274-285.	4.7	2
32	Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators. Nano Letters, 2017, 17, 4497-4501.	9.1	83
33	3DFlex: A rapid prototyping approach for multi-material compliant mechanisms in millirobots. , 2017, , .		6
34	Magnetic actuation of thick film multi-material compliant mechanisms. Journal of Micromechanics and Microengineering, 2017, 27, 125021.	2.6	3
35	Rapid Manufacturing of Mechanoreceptive Skins for Slip Detection in Robotic Grasping. Advanced Materials Technologies, 2017, 2, 1600188.	5.8	39
36	Bridge risk investigation diagnostic grouped exploratory (BRIDGE) bot., 2017,,.		5

#	Article	lF	Citations
37	Dynamics and scaling of magnetically folding multi-material structures. , 2016, , .		1
38	A soft microfabricated capacitive sensor for high dynamic range strain sensing., 2016,,.		5
39	Sensing skin for detecting wing deformation with embedded soft strain sensors. , 2016, , .		7
40	A novel all-elastomer MEMS tactile sensor for high dynamic range shear and normal force sensing. Journal of Micromechanics and Microengineering, 2015, 25, 095009.	2.6	50
41	Bio-inspired wind frame state sensing and estimation for MAV applications. , 2015, , .		9
42	The effect of porosity on energetic porous silicon solid propellant micro-propulsion. Journal of Micromechanics and Microengineering, 2015, 25, 115022.	2.6	9
43	A paper-based electrostatic zipper actuator for printable robots. , 2014, , .		18
44	Magnetic actuation of ultra-compliant micro robotic mechanisms. , 2014, , .		5
45	An Ultracompact Dual-Stage Converter for Driving Electrostatic Actuators in Mobile Microrobots. IEEE Transactions on Power Electronics, 2014, 29, 2991-3000.	7.9	23
46	Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Materials and Structures, 2013, 22, 014010.	3.5	32
47	TinyTeRP: A Tiny Terrestrial Robotic Platform with modular sensing. , 2013, , .		13
48	Large area all-elastomer capacitive tactile arrays. , 2013, , .		1
49	All-elastomer in-plane MEMS capacitive tactile sensor for normal force detection., 2013,,.		8
50	Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms. Journal of Mechanisms and Robotics, 2013, 5, .	2.2	25
51	Efficiency and effectiveness analysis of a new direct drive miniature quadruped robot., 2013, , .		9
52	Using an inertial tail for rapid turns on a miniature legged robot. , 2013, , .		20
53	Toward fluidic microrobots using electrowetting., 2012,,.		9
54	Microfabrication of compliant all-polymer MEMS thermal actuators. Sensors and Actuators A: Physical, 2012, 177, 16-22.	4.1	6

#	Article	lF	CITATIONS
55	The First Launch of an Autonomous Thrust-Driven Microrobot Using Nanoporous Energetic Silicon. Journal of Microelectromechanical Systems, 2012, 21, 198-205.	2.5	58
56	Soft polymer MEMS., 2011, , .		3
57	First leaps toward jumping microrobots. , 2011, , .		27
58	Multi-material compliant mechanisms for mobile millirobots., 2011,,.		14
59	Batch fabricated bidirectional dielectric elastomer actuators. , 2011, , .		4
60	Integrated silicon-PDMS process for microrobot mechanisms. , 2010, , .		5
61	SOI/elastomer process for energy storage and rapid release. Journal of Micromechanics and Microengineering, 2010, 20, 104011.	2.6	23
62	A multi-material milli-robot prototyping process. , 2009, , .		5
63	Effective and efficient locomotion for millimeter-sized microrobots. , 2008, , .		18
64	Design of an Autonomous Jumping Microrobot. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	52