List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/849007/publications.pdf Version: 2024-02-01

DED-HSIEN LIEN

#	Article	IF	CITATIONS
1	Bright Mid-Wave Infrared Resonant-Cavity Light-Emitting Diodes Based on Black Phosphorus. Nano Letters, 2022, 22, 1294-1301.	4.5	19
2	Defect Inspection Techniques in SiC. Nanoscale Research Letters, 2022, 17, 30.	3.1	18
3	Infrared Photodetectors Based on 2D Materials and Nanophotonics. Advanced Functional Materials, 2022, 32, .	7.8	86
4	Recent Advances in Two-Dimensional Quantum Dots and Their Applications. Nanomaterials, 2021, 11, 1549.	1.9	39
5	Actively variable-spectrum optoelectronics with black phosphorus. Nature, 2021, 596, 232-237.	13.7	132
6	Effects of Mg Doping on Double Channel Layer Atmospheric Pressure-Plasma Enhanced Chemical Vapor Deposition Fabricated Amorphous InGaZnO Thin Film Transistors. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1412-1416.	0.1	0
7	Study of InGaZnO Thin Film Transistors With Dual Treatment of Pre-Oxidation ZrO ₂ High- <i>ΰ</i> Dielectric and Post-Oxidation InGaZnO Channel by Neutral Beam System. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1733-1738.	0.1	Ο
8	Shape-controlled single-crystal growth of InP at low temperatures down to 220 ŰC. Proceedings of the United States of America, 2020, 117, 902-906.	3.3	8
9	Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nature Nanotechnology, 2020, 15, 53-58.	15.6	153
10	Centimeterâ€Scale and Visible Wavelength Monolayer Lightâ€Emitting Devices. Advanced Functional Materials, 2020, 30, 1907941.	7.8	20
11	Evaporated Se <i>_x</i> Te _{1â€} <i>_x</i> Thin Films with Tunable Bandgaps for Shortâ€Wave Infrared Photodetectors. Advanced Materials, 2020, 32, e2001329.	11.1	49
12	A generic electroluminescent device for emission from infrared to ultraviolet wavelengths. Nature Electronics, 2020, 3, 612-621.	13.1	23
13	Neutral Exciton Diffusion in Monolayer MoS ₂ . ACS Nano, 2020, 14, 13433-13440.	7.3	62
14	Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS ₂ and WS ₂ . Journal of Physical Chemistry C, 2020, 124, 12175-12184.	1.5	51
15	Bright electroluminescence in ambient conditions from WSe2 p-n diodes using pulsed injection. Applied Physics Letters, 2019, 115, 011103.	1.5	13
16	Scanning Probe Lithography Patterning of Monolayer Semiconductors and Application in Quantifying Edge Recombination. Advanced Materials, 2019, 31, e1900136.	11.1	27
17	Optical and electrical properties of two-dimensional palladium diselenide. Applied Physics Letters, 2019, 114, .	1.5	74
18	Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364, 468-471.	6.0	243

#	Article	IF	CITATIONS
19	Dip Coating Passivation of Crystalline Silicon by Lewis Acids. ACS Nano, 2019, 13, 3723-3729.	7.3	28
20	Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. Nano Letters, 2019, 19, 2850-2857.	4.5	67
21	Monolayer Semiconductors: Scanning Probe Lithography Patterning of Monolayer Semiconductors and Application in Quantifying Edge Recombination (Adv. Mater. 48/2019). Advanced Materials, 2019, 31, 1970340.	11.1	0
22	Strong optical response and light emission from a monolayer molecular crystal. Nature Communications, 2019, 10, 5589.	5.8	59
23	Synthetic WSe ₂ monolayers with high photoluminescence quantum yield. Science Advances, 2019, 5, eaau4728.	4.7	78
24	Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	12
25	Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Advanced Materials, 2018, 30, e1707442.	11.1	226
26	Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nature Communications, 2018, 9, 1229.	5.8	146
27	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, 2018, 1, .	2.0	135
28	Highly Reliable Superhydrophobic Protection for Organic Field-Effect Transistors by Fluoroalkylsilane-Coated TiO ₂ Nanoparticles. ACS Nano, 2018, 12, 11062-11069.	7.3	32
29	A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments. Advanced Materials, 2018, 30, e1705385.	11.1	13
30	Self-powered nanodevices for fast UV detection and energy harvesting using core-shell nanowire geometry. Nano Energy, 2018, 51, 294-299.	8.2	39
31	Resonanceâ€Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed. Advanced Materials, 2018, 30, e1801972.	11.1	43
32	Thermoelectrics: A Nanostructuring Method to Decouple Electrical and Thermal Transport through the Formation of Electrically Triggered Conductive Nanofilaments (Adv. Mater. 28/2018). Advanced Materials, 2018, 30, 1870243.	11.1	0
33	Nanophotonic Devices: Resonance-Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed (Adv. Mater. 34/2018). Advanced Materials, 2018, 30, 1870257.	11.1	3
34	360° omnidirectional, printable and transparent photodetectors for flexible optoelectronics. Npj Flexible Electronics, 2018, 2, .	5.1	40
35	Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS ₂ by Fluoropolymer Encapsulation and Superacid Treatment. ACS Nano, 2017, 11, 5179-5185.	7.3	86
36	Highly Deformable Origami Paper Photodetector Arrays. ACS Nano, 2017, 11, 10230-10235.	7.3	94

#	Article	IF	CITATIONS
37	Strain-engineered growth of two-dimensional materials. Nature Communications, 2017, 8, 608.	5.8	253
38	Measuring the Edge Recombination Velocity of Monolayer Semiconductors. Nano Letters, 2017, 17, 5356-5360.	4.5	19
39	Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions. Scientific Reports, 2016, 6, 23945.	1.6	45
40	Improved photoswitching response times of MoS2 field-effect transistors by stacking <i>p</i> -type copper phthalocyanine layer. Applied Physics Letters, 2016, 109, .	1.5	29
41	Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sensors, 2016, 1, 866-874.	4.0	297
42	Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films. Chemistry of Materials, 2016, 28, 4602-4607.	3.2	12
43	High Luminescence Efficiency in MoS ₂ Grown by Chemical Vapor Deposition. ACS Nano, 2016, 10, 6535-6541.	7.3	140
44	Monolithic 3D CMOS Using Layered Semiconductors. Advanced Materials, 2016, 28, 2547-2554.	11.1	107
45	Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529, 509-514.	13.7	3,508
46	Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. Nano Letters, 2016, 16, 2786-2791.	4.5	233
47	A Fully Transparent Resistive Memory for Harsh Environments. Scientific Reports, 2015, 5, 15087.	1.6	17
48	Dual-Gated MoS ₂ /WSe ₂ van der Waals Tunnel Diodes and Transistors. ACS Nano, 2015, 9, 2071-2079.	7.3	560
49	Engineering Light Outcoupling in 2D Materials. Nano Letters, 2015, 15, 1356-1361.	4.5	138
50	MoS2 Heterojunctions by Thickness Modulation. Scientific Reports, 2015, 5, 10990.	1.6	93
51	Shape-Dependent Light Harvesting of 3D Gold Nanocrystals on Bulk Heterojunction Solar Cells: Plasmonic or Optical Scattering Effect?. Journal of Physical Chemistry C, 2015, 119, 7554-7564.	1.5	36
52	Surface effects in metal oxide-based nanodevices. Nanoscale, 2015, 7, 19874-19884.	2.8	47
53	Inkjet-printed transparent nanowire thin film features for UV photodetectors. RSC Advances, 2015, 5, 70707-70712.	1.7	34
54	Near-unity photoluminescence quantum yield in MoS ₂ . Science, 2015, 350, 1065-1068.	6.0	993

#	Article	IF	CITATIONS
55	Harsh photovoltaics using InGaN/GaN multiple quantum well schemes. Nano Energy, 2015, 11, 104-109.	8.2	49
56	Low-resistivity C54-TiSi ₂ as a sidewall-confinement nanoscale electrode for three-dimensional vertical resistive memory. Applied Physics Letters, 2014, 105, 182101.	1.5	6
57	Photon management in nanostructured solar cells. Journal of Materials Chemistry C, 2014, 2, 3144.	2.7	64
58	A broadband and omnidirectional light-harvesting scheme employing nanospheres on Si solar cells. Nano Energy, 2014, 6, 36-43.	8.2	38
59	Trilayered MoS\$_{f 2}\$ Metal –Semiconductor–Metal Photodetectors: Photogain and Radiation Resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 30-35.	1.9	40
60	See-Through <inline-formula><tex-math>\$hbox{Ga}_{2}hbox{O}_{3}\$</tex-math></inline-formula> Solar-Blind Photodetectors for Use in Harsh Environments. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 112-117.	1.9	49
61	All-Printed Paper Memory. ACS Nano, 2014, 8, 7613-7619.	7.3	137
62	Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction. ACS Photonics, 2014, 1, 354-359.	3.2	61
63	Light extraction enhancement with radiation pattern shaping of LEDs by waveguiding nanorods with impedance-matching tips. Nanoscale, 2014, 6, 2624-2628.	2.8	39
64	Resistive Memory for Harsh Electronics: Immunity to Surface Effect and High Corrosion Resistance via Surface Modification. Scientific Reports, 2014, 4, 4402.	1.6	34
65	Few-Layer MoS ₂ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013, 7, 3905-3911.	7.3	584
66	An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic–organic hybrid solar cells. Nanoscale, 2013, 5, 6350.	2.8	16
67	Ultrasound thermal mapping based on a hybrid method combining cross-correlation and zero-crossing tracking. Journal of the Acoustical Society of America, 2013, 134, 1530-1540.	0.5	8
68	Enhanced light-extraction from hierarchical surfaces consisting of p-GaN microdomes and SiO2 nanorods for GaN-based light-emitting diodes. Applied Physics Letters, 2013, 103, .	1.5	23
69	High-endurance solar-blind photodetectors using AlN on Si substrates for extreme harsh environment applications. , 2013, , .		0
70	4H–SiC Metal–Semiconductor–Metal Ultraviolet Photodetectors in Operation of 450 \$^{circ}hbox{C}\$. IEEE Electron Device Letters, 2012, 33, 1586-1588.	2.2	76
71	Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells. Nanoscale, 2012, 4, 7346.	2.8	33
72	Enhanced Recovery Speed of Nanostructured ZnO Photodetectors Using Nanobelt Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1807-1811.	1.9	36

#	Article	IF	CITATIONS
73	Probing Surface Band Bending of Surface-Engineered Metal Oxide Nanowires. ACS Nano, 2012, 6, 9366-9372.	7.3	149
74	Supersensitive, Ultrafast, and Broad-Band Light-Harvesting Scheme Employing Carbon Nanotube/TiO ₂ Core–Shell Nanowire Geometry. ACS Nano, 2012, 6, 6687-6692.	7.3	80
75	Critical Capillary Absorption of Currentâ€Melted Silver Nanodroplets into Multiwalled Carbon Nanotubes. Small, 2012, 8, 2158-2162.	5.2	11
76	Singleâ€InNâ€Nanowire Nanogenerator with Upto 1 V Output Voltage. Advanced Materials, 2010, 22, 4008-4013.	11.1	169
77	Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect. ACS Nano, 2010, 4, 6285-6291.	7.3	466
78	Resonance frequency shift of a carbon nanotube with a silver nanoparticle adsorbed at various positions. Applied Physics Letters, 2010, 97, 133105.	1.5	6
79	Photoconductive enhancement of single ZnO nanowire through localized Schottky effects. Optics Express, 2010, 18, 14836.	1.7	105
80	Strain promoted conductivity of doped carbon nanotubes. Applied Physics Letters, 2008, 93, 223111.	1.5	4
81	Gas sensing improvement of carbon nanotubes by NH4OH–flash treatment: a nondestructive purification technique. Journal of Materials Chemistry, 2007, 17, 3581.	6.7	13
82	Photocurrent Amplification at Carbon Nanotube-Metal Contacts. Advanced Materials, 2006, 18, 98-103.	11.1	54