Enrico Pizzutilo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489915/publications.pdf

Version: 2024-02-01

		623734 99697	
15	1,426 citations	14	15
papers	citations	h-index	g-index
1.5	1.5	1.5	2201
15	15	15	2301
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications, 2022, 13, 1973.	12.8	9
2	The oxygen reduction reaction on palladium with low metal loadings: The effects of chlorides on the stability and activity towards hydrogen peroxide. Journal of Catalysis, 2020, 389, 400-408.	6.2	25
3	Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesis. ACS Catalysis, 2020, 10, 5928-5938.	11.2	58
4	Shape-Controlled Nanoparticles in Pore-Confined Space. Journal of the American Chemical Society, 2018, 140, 15684-15689.	13.7	48
5	Impact of Palladium Loading and Interparticle Distance on the Selectivity for the Oxygen Reduction Reaction toward Hydrogen Peroxide. Journal of Physical Chemistry C, 2018, 122, 15878-15885.	3.1	53
6	The stability number as a metric for electrocatalyst stability benchmarking. Nature Catalysis, 2018, 1, 508-515.	34.4	533
7	Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. Chemical Physics Letters, 2017, 683, 436-442.	2.6	112
8	Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta, 2017, 229, 467-477.	5.2	29
9	Addressing stability challenges of using bimetallic electrocatalysts: the case of gold–palladium nanoalloys. Catalysis Science and Technology, 2017, 7, 1848-1856.	4.1	35
10	The Space Confinement Approach Using Hollow Graphitic Spheres to Unveil Activity and Stability of Ptâ€Co Nanocatalysts for PEMFC. Advanced Energy Materials, 2017, 7, 1700835.	19.5	49
11	Gold–Palladium Bimetallic Catalyst Stability: Consequences for Hydrogen Peroxide Selectivity. ACS Catalysis, 2017, 7, 5699-5705.	11.2	76
12	Experimental Methodologies to Understand Degradation of Nanostructured Electrocatalysts for PEM Fuel Cells: Advances and Opportunities. ChemElectroChem, 2016, 3, 1524-1536.	3.4	30
13	Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catalysis, 2016, 6, 3136-3146.	11.2	201
14	Structure–Activity–Stability Relationships for Space-Confined Pt _{<i>x</i>} Ni _{<i>y</i>} Nanoparticles in the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 8058-8068.	11.2	56
15	On the Need of Improved Accelerated Degradation Protocols (ADPs): Examination of Platinum Dissolution and Carbon Corrosion in Half-Cell Tests. Journal of the Electrochemical Society, 2016, 163, F1510-F1514.	2.9	112