Amaya Viros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/84899/publications.pdf Version: 2024-02-01

AMAYA VIDOS

#	Article	IF	CITATIONS
1	Molecular characterization of fast-growing melanomas. Journal of the American Academy of Dermatology, 2022, 86, 312-321.	1.2	11
2	Molecular subtype, biological sex and age shape melanoma tumour evolution. British Journal of Dermatology, 2021, 184, 328-337.	1.5	13
3	The paradox-breaking panRAF plus SRC family kinase inhibitor, CCT3833, is effective in mutant KRAS-driven cancers. Annals of Oncology, 2021, 32, 269-278.	1.2	14
4	Female Immunity Protects from Cutaneous Squamous Cell Carcinoma. Clinical Cancer Research, 2021, 27, 3215-3223.	7.0	10
5	Ultraviolet light-induced collagen degradation inhibits melanoma invasion. Nature Communications, 2021, 12, 2742.	12.8	25
6	Mutational Characterization of Cutaneous Melanoma Supports Divergent Pathways Model for Melanoma Development. Cancers, 2021, 13, 5219.	3.7	5
7	Positive Attributes of Anti-TERT CD4 T-Helper Type 1 Immune Responses in Melanoma. Journal of Investigative Dermatology, 2021, , .	0.7	2
8	New biomarkers improve stratification of patients with melanoma. British Journal of Dermatology, 2020, 182, 5-6.	1.5	1
9	Brain microenvironment-driven resistance to immune and targeted therapies in acral melanoma. ESMO Open, 2020, 5, e000707.	4.5	3
10	Histologic Features Associated With an Invasive Component in Lentigo Maligna Lesions. JAMA Dermatology, 2019, 155, 782.	4.1	12
11	Ultraviolet radiation–induced DNA damage is prognostic for outcome in melanoma. Nature Medicine, 2019, 25, 221-224.	30.7	75
12	Ultraviolet light and melanoma. Journal of Pathology, 2018, 244, 578-585.	4.5	47
13	Nodular Melanoma: A Histopathologic Entity?. Acta Dermato-Venereologica, 2018, 98, 460-462.	1.3	22
14	Mechanisms of Drug Resistance in Melanoma. Handbook of Experimental Pharmacology, 2017, 249, 91-108.	1.8	63
15	Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface. Nature Communications, 2017, 8, 14909.	12.8	69
16	New insights into naevoid melanomas: a clinicopathological reassessment. Histopathology, 2017, 71, 943-950.	2.9	13
17	Cutaneous melanoma primary site is linked to nevus density. Oncotarget, 2017, 8, 98876-98886.	1.8	6
18	So You Can Teach Old Fibroblasts New Tricks. Cancer Discovery, 2016, 6, 581-583.	9.4	5

Amaya Viros

#	Article	IF	CITATIONS
19	Application of Sequencing, Liquid Biopsies, and Patient-Derived Xenografts for Personalized Medicine in Melanoma. Cancer Discovery, 2016, 6, 286-299.	9.4	208
20	Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Molecular Oncology, 2016, 10, 73-84.	4.6	129
21	Paradox-Breaking RAF Inhibitors that Also Target SRC Are Effective in Drug-Resistant BRAF Mutant Melanoma. Cancer Cell, 2015, 27, 85-96.	16.8	188
22	Intravital Imaging Reveals How BRAF Inhibition Generates Drug-Tolerant Microenvironments with High Integrin I²1/FAK Signaling. Cancer Cell, 2015, 27, 574-588.	16.8	485
23	A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nature Communications, 2015, 6, 8093.	12.8	58
24	BRAF Inhibitors Induce Metastasis in RAS Mutant or Inhibitor-Resistant Melanoma Cells by Reactivating MEK and ERK Signaling. Science Signaling, 2014, 7, ra30.	3.6	113
25	^{G12D} <scp>NRAS</scp> and kinaseâ€dead <scp>BRAF</scp> cooperate to drive naevogenesis and melanomagenesis. Pigment Cell and Melanoma Research, 2014, 27, 1162-1166.	3.3	8
26	Hooked on <scp>UVR</scp> . Pigment Cell and Melanoma Research, 2014, 27, 1009-1010.	3.3	1
27	Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nature Communications, 2014, 5, 4255.	12.8	140
28	Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature, 2014, 511, 478-482.	27.8	208
29	Inhibiting EGF Receptor or SRC Family Kinase Signaling Overcomes BRAF Inhibitor Resistance in Melanoma. Cancer Discovery, 2013, 3, 158-167.	9.4	300
30	Mind the IQGAP. Cancer Cell, 2013, 23, 715-717.	16.8	23
31	Primary Melanoma of the CNS in Children Is Driven by Congenital Expression of Oncogenic <i>NRAS</i> in Melanocytes. Cancer Discovery, 2013, 3, 458-469.	9.4	61
32	Topical 5-Fluorouracil Elicits Regressions of BRAF Inhibitor–Induced Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2013, 133, 274-276.	0.7	14
33	Keratosis lichenoides chronica masquerading as discoid lupus erythematosus. Clinical and Experimental Dermatology, 2013, 38, 327-329.	1.3	3
34	V600EBraf::Tyr-CreERT2::K14-Kitl Mice Do Not Develop Superficial Spreading-Like Melanoma: Keratinocyte Kit Ligand Is Insufficient to "Translocate―V600EBraf-Driven Melanoma to the Epidermis. Journal of Investigative Dermatology, 2012, 132, 488-491.	0.7	5
35	<i>RAS</i> Mutations in Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New England Journal of Medicine, 2012, 366, 207-215.	27.0	978
36	Metformin Accelerates the Growth of BRAFV600E-Driven Melanoma by Upregulating VEGF-A. Cancer Discovery, 2012, 2, 344-355.	9.4	133

Amaya Viros

#	Article	IF	CITATIONS
37	Clinical, molecular and biochemical characterization of nine Spanish families with Conradi-Hünermann-Happle syndrome: new insights into X-linked dominant chondrodysplasia punctata with a comprehensive review of the literature. British Journal of Dermatology, 2012, 166, 830-838.	1.5	40
38	Oncogenic BRAF Induces Melanoma Cell Invasion by Downregulating the cGMP-Specific Phosphodiesterase PDE5A. Cancer Cell, 2011, 19, 45-57.	16.8	190
39	ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell, 2011, 20, 229-245.	16.8	342
40	Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. European Journal of Endocrinology, 2011, 165, 315-322.	3.7	184
41	Gatekeeper Mutations Mediate Resistance to BRAF-Targeted Therapies. Science Translational Medicine, 2010, 2, 35ra41.	12.4	142
42	Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell and Melanoma Research, 2010, 23, 210-215.	3.3	101
43	Eruptive Juvenile Xanthogranuloma Associated with Relapsing Acute Lymphoblastic Leukemia. Pediatric Dermatology, 2008, 25, 487-488.	0.9	18
44	Improving Melanoma Classification by Integrating Genetic and Morphologic Features. PLoS Medicine, 2008, 5, e120.	8.4	322
45	β-Catenin induces immortalization of melanocytes by suppressing <i>p16^{INK4a}</i> expression and cooperates with N-Ras in melanoma development. Genes and Development, 2007, 21, 2923-2935.	5.9	283
46	VIGNETTES. Archives of Dermatology, 2005, 141, 1053-4.	1.4	15