
Angela N Simpson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	21.4	529
2	A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nature Genetics, 2014, 46, 51-55.	21.4	497
3	Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax, 2008, 63, 974-980.	5.6	435
4	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nature Genetics, 2018, 50, 42-53.	21.4	426
5	Allergy or tolerance in children sensitized to peanut: Prevalence and differentiation using component-resolved diagnostics. Journal of Allergy and Clinical Immunology, 2010, 125, 191-197.e13.	2.9	397
6	Beyond Atopy. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1200-1206.	5.6	364
7	Air Pollution Exposure and Lung Function in Children: The ESCAPE Project. Environmental Health Perspectives, 2013, 121, 1357-1364.	6.0	320
8	Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nature Genetics, 2012, 44, 187-192.	21.4	311
9	Endotoxin Exposure, CD14, and Allergic Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 386-392.	5.6	278
10	Effect of environmental manipulation in pregnancy and early life on respiratory symptoms and atopy during first year of life: a randomised trial. Lancet, The, 2001, 358, 188-193.	13.7	277
11	Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Human Molecular Genetics, 2016, 25, 389-403.	2.9	275
12	Early Life Environmental Control. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 433-439.	5.6	254
13	Peanut allergy: Effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. Journal of Allergy and Clinical Immunology, 2014, 134, 867-875.e1.	2.9	240
14	Air Pollution and Respiratory Infections during Early Childhood: An Analysis of 10 European Birth Cohorts within the ESCAPE Project. Environmental Health Perspectives, 2014, 122, 107-113.	6.0	224
15	Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nature Genetics, 2013, 45, 902-906.	21.4	221
16	Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies. PLoS Medicine, 2014, 11, e1001748.	8.4	216
17	Gene-Environment Interaction in the Onset of Eczema in Infancy: Filaggrin Loss-of-Function Mutations Enhanced by Neonatal Cat Exposure. PLoS Medicine, 2008, 5, e131.	8.4	215
18	<scp>BSACI</scp> guideline for the diagnosis and management of allergic and nonâ€ellergic rhinitis (Revised Edition 2017; First edition 2007). Clinical and Experimental Allergy, 2017, 47, 856-889.	2.9	208

#	Article	IF	CITATIONS
19	Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies. Lancet Respiratory Medicine,the, 2018, 6, 526-534.	10.7	208
20	Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Science Immunology, 2020, 5, .	11.9	198
21	IgE antibody quantification and the probability of wheeze in preschool children. Journal of Allergy and Clinical Immunology, 2005, 116, 744-749.	2.9	192
22	Wheeze Phenotypes and Lung Function in Preschool Children. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 231-237.	5.6	187
23	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2019, 7, 20-34.	10.7	183
24	Manchester Asthma and Allergy Study: Low-allergen environment can be achieved and maintained during pregnancy and in early life. Journal of Allergy and Clinical Immunology, 2000, 105, 252-258.	2.9	174
25	Quantification of specific IgE to whole peanut extract and peanut components in prediction of peanut allergy. Journal of Allergy and Clinical Immunology, 2011, 127, 684-685.	2.9	169
26	Genome-wide association study to identify genetic determinants of severe asthma. Thorax, 2012, 67, 762-768.	5.6	169
27	Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax, 1998, 53, 33-38.	5.6	166
28	Allergen avoidance in the treatment of asthma and atopic disorders. Thorax, 1998, 53, 63-72.	5.6	157
29	Trajectories of Lung Function during Childhood. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1101-1109.	5.6	153
30	Decreased prevalence of sensitization to cats with high exposure to cat allergen. Journal of Allergy and Clinical Immunology, 2001, 108, 537-539.	2.9	141
31	Multiple atopy phenotypes and their associations with asthma: similar findings from two birth cohorts. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 764-770.	5.7	141
32	Toward clinically applicable biomarkers for asthma: An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1835-1851.	5.7	135
33	Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study. Lancet Respiratory Medicine,the, 2015, 3, 613-620.	10.7	134
34	Polymorphisms in A Disintegrin and Metalloprotease 33 (ADAM33) Predict Impaired Early-Life Lung Function. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 55-60.	5.6	130
35	Evolution pathways of IgE responses to grass and mite allergens throughout childhood. Journal of Allergy and Clinical Immunology, 2015, 136, 1645-1652.e8.	2.9	129
36	NAC Manchester Asthma and Allergy Study (^{NAC} MAAS): risk factors for asthma and allergic disorders in adults. Clinical and Experimental Allergy, 2001, 31, 391-399.	2.9	125

#	Article	IF	CITATIONS
37	A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE project. European Respiratory Journal, 2015, 45, 610-624.	6.7	119
38	Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. Journal of Allergy and Clinical Immunology, 2018, 142, 485-496.e16.	2.9	119
39	Allergens, Viruses, and Asthma Exacerbations. Proceedings of the American Thoracic Society, 2004, 1, 99-104.	3.5	111
40	A novel common variant in DCST2 is associated with length in early life and height in adulthood. Human Molecular Genetics, 2015, 24, 1155-1168.	2.9	109
41	Sensitivity and exposure to indoor allergens in adults with differing asthma severity. European Respiratory Journal, 1999, 13, 654-659.	6.7	108
42	Food protein–induced enterocolitis syndrome can occur in adults. Journal of Allergy and Clinical Immunology, 2012, 130, 1199-1200.	2.9	107
43	Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature Genetics, 2018, 50, 1072-1080.	21.4	106
44	Preventing Severe Asthma Exacerbations in Children. A Randomized Trial of Mite-Impermeable Bedcovers. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 150-158.	5.6	104
45	Reported versus confirmed wheeze and lung function in early life. Archives of Disease in Childhood, 2004, 89, 540-543.	1.9	103
46	Relationship between mite, cat, and dog allergens in reservoir dust and ambient air. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 612-616.	5.7	97
47	Allergy in severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 207-220.	5.7	96
48	Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics, 2020, 16, e1008718.	3.5	95
49	Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. Journal of Allergy and Clinical Immunology, 2017, 140, 534-542.	2.9	94
50	Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, 2, 720-735.e4.	4.4	87
51	Current mite, cat, and dog allergen exposure, pet ownership, and sensitization to inhalant allergens in adults. Journal of Allergy and Clinical Immunology, 2003, 111, 402-407.	2.9	86
52	Original article: Rhinoconjunctivitis in 5â€yearâ€old children: a populationâ€based birth cohort study. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 385-393.	5.7	83
53	Exhaled Nitric Oxide, Sensitization, and Exposure to Allergens in Patients with Asthma Who Are Not Taking Inhaled Steroids. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 45-49.	5.6	82
54	Lung Function at Age 3 Years. JAMA Pediatrics, 2004, 158, 996.	3.0	79

4

#	Article	IF	CITATIONS
55	The role of lipopolysaccharide in the development of atopy in humans. Clinical and Experimental Allergy, 2010, 40, 209-223.	2.9	79
56	Long-term Exposure to PM ₁₀ and NO ₂ in Association with Lung Volume and Airway Resistance in the MAAS Birth Cohort. Environmental Health Perspectives, 2013, 121, 1232-1238.	6.0	79
57	Assessing the association of early life antibiotic prescription with asthma exacerbations, impaired antiviral immunity, and genetic variants in 17q21: a population-based birth cohort study. Lancet Respiratory Medicine,the, 2014, 2, 621-630.	10.7	79
58	Importance of indoor allergens in the induction of allergy and elicitation of. Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 115-120.	5.7	78
59	Washing the dog reduces dog allergen levels, but the dog needs to be washed twice a week. Journal of Allergy and Clinical Immunology, 1999, 103, 581-585.	2.9	78
60	Quantification of atopy and the probability of rhinitis in preschool children: a populationâ€based birth cohort study. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 1379-1386.	5.7	77
61	Joint modeling of parentally reported and physician-confirmed wheeze identifies children with persistent troublesome wheezing. Journal of Allergy and Clinical Immunology, 2013, 132, 575-583.e12.	2.9	77
62	Patterns of IgE responses to multiple allergen components and clinical symptoms at age 11 years. Journal of Allergy and Clinical Immunology, 2015, 136, 1224-1231.	2.9	77
63	Meta-analysis of air pollution exposure association withÂallergic sensitization in European birth cohorts. Journal of Allergy and Clinical Immunology, 2014, 133, 767-776.e7.	2.9	76
64	Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. Journal of Allergy and Clinical Immunology, 2018, 142, 407-414.	2.9	76
65	A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics, 2019, 28, 3327-3338.	2.9	76
66	Body mass index in young children and allergic disease: gender differences in a longitudinal study. Clinical and Experimental Allergy, 2011, 41, 78-85.	2.9	74
67	Cytokine Responses to Rhinovirus and Development of Asthma, Allergic Sensitization, and Respiratory Infections during Childhood. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1265-1274.	5.6	73
68	Pets and the development of allergic sensitization. Current Allergy and Asthma Reports, 2005, 5, 212-220.	5.3	72
69	Distinguishing Wheezing Phenotypes from Infancy to Adolescence. A Pooled Analysis of Five Birth Cohorts. Annals of the American Thoracic Society, 2019, 16, 868-876.	3.2	68
70	Dimensions of Respiratory Symptoms in Preschool Children. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 1358-1363.	5.6	67
71	The effect of air filtration on airborne dog allergen. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 484-488.	5.7	66
72	Detection of IgE Reactivity to a Handful of Allergen Molecules in Early Childhood Predicts Respiratory Allergy in Adolescence. EBioMedicine, 2017, 26, 91-99.	6.1	66

#	Article	IF	CITATIONS
73	Distinguishing benign from pathologic TH2 immunity in atopic children. Journal of Allergy and Clinical Immunology, 2016, 137, 379-387.	2.9	64
74	Shared genetic variants suggest common pathways in allergy and autoimmune diseases. Journal of Allergy and Clinical Immunology, 2017, 140, 771-781.	2.9	63
75	Day-care attendance, position in sibship, and early childhood wheezing: A population-based birth cohort study. Journal of Allergy and Clinical Immunology, 2008, 122, 500-506.e5.	2.9	62
76	Machine learning to identify pairwise interactions between specific IgE antibodies and their association with asthma: A cross-sectional analysis within a population-based birth cohort. PLoS Medicine, 2018, 15, e1002691.	8.4	62
77	European birth cohort studies on asthma and atopic diseases: I. Comparison of study designs – a GA ² LEN initiative. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 221-228.	5.7	61
78	Diagnosis of asthma in symptomatic children based on measures of lung function: an analysis of data from a population-based birth cohort study. The Lancet Child and Adolescent Health, 2017, 1, 114-123.	5.6	60
79	Exhaled Breath Condensate pH and Childhood Asthma. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 254-259.	5.6	59
80	Effect of day care attendance on sensitization and atopic wheezing differs by Toll-like receptor 2 genotype in 2 population-based birth cohort studies. Journal of Allergy and Clinical Immunology, 2011, 127, 390-397.e9.	2.9	59
81	Elemental Composition of Particulate Matter and the Association with Lung Function. Epidemiology, 2014, 25, 648-657.	2.7	59
82	Disaggregating asthma: Big investigation versus big data. Journal of Allergy and Clinical Immunology, 2017, 139, 400-407.	2.9	58
83	Stringent environmental control in pregnancy and early life: the long-term effects on mite, cat and dog allergen. Clinical and Experimental Allergy, 2003, 33, 1289-1296.	2.9	57
84	European birth cohort studies on asthma and atopic diseases: II. Comparison of outcomes and exposures – a GA2LEN initiative. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 1104-1111.	5.7	56
85	The Study Team for Early Life Asthma Research (STELAR) consortium â€~Asthma e-lab': team science bringing data, methods and investigators together. Thorax, 2015, 70, 799-801.	5.6	56
86	Impact of rhinitis on asthma severity in school-age children. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1515-1521.	5.7	55
87	Time of Day Affects Eosinophil Biomarkers in Asthma: Implications for Diagnosis and Treatment. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1578-1581.	5.6	53
88	Challenges in interpreting allergen microarrays in relation to clinical symptoms: A machine learning approach. Pediatric Allergy and Immunology, 2014, 25, 71-79.	2.6	49
89	Evolution of IgE responses to multiple allergen components throughout childhood. Journal of Allergy and Clinical Immunology, 2018, 142, 1322-1330.	2.9	49
90	Dust mite allergens are carried on not only large particles. Pediatric Allergy and Immunology, 1999, 10, 258-260.	2.6	46

#	Article	IF	CITATIONS
91	Genetic Variation in Vascular Endothelial Growth Factor-A and Lung Function. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 1197-1204.	5.6	46
92	Skin test reactivity to natural and recombinant Blomia and Dermatophagoides spp. allergens among mite allergic patients in the UK. Allergy: European Journal of Allergy and Clinical Immunology, 2003, 58, 53-56.	5.7	45
93	Staphylococcus aureus sensitization and allergic disease in early childhood: Population-based birth cohort study. Journal of Allergy and Clinical Immunology, 2007, 119, 930-936.	2.9	45
94	Dietary antioxidant intake, allergic sensitization and allergic diseases in young children. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1766-1772.	5.7	45
95	17q12-21 Variants are associated with asthma and interact with active smoking in an adult population from the United Kingdom. Annals of Allergy, Asthma and Immunology, 2012, 108, 402-411.e9.	1.0	45
96	Challenges in Identifying Asthma Subgroups Using Unsupervised Statistical Learning Techniques. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1303-1312.	5.6	45
97	Environmental allergen exposure, sensitisation and asthma: from whole populations to individuals at risk. Thorax, 2004, 59, 825-827.	5.6	44
98	Early pet exposure: friend or foe?. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 7-14.	2.3	43
99	Pediatric asthma and development of atopy. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 173-180.	2.3	42
100	Allergy and asthma prevention 2014. Pediatric Allergy and Immunology, 2014, 25, 516-533.	2.6	42
101	Diminished airway macrophage expression of the Axl receptor tyrosine kinase is associated with defective efferocytosis in asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 1144-1146.e4.	2.9	42
102	Behavior Problems Antecede the Development of Wheeze in Childhood. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 323-327.	5.6	41
103	Vitamin D receptor genotype influences risk of upper respiratory infection. British Journal of Nutrition, 2018, 120, 891-900.	2.3	41
104	Modelling air pollution for epidemiologic research — Part I: A novel approach combining land use regression and air dispersion. Science of the Total Environment, 2010, 408, 5862-5869.	8.0	39
105	Characterizing wheeze phenotypes to identify endotypes of childhood asthma, and the implications for future management. Expert Review of Clinical Immunology, 2013, 9, 921-936.	3.0	39
106	Predicting phenotypes of asthma and eczema with machine learning. BMC Medical Genomics, 2014, 7, S7.	1.5	39
107	Allergen avoidance in the primary prevention of asthma. Current Opinion in Allergy and Clinical Immunology, 2004, 4, 45-51.	2.3	38
108	Allergen-specific IgG antibody levels modify the relationship between allergen-specific IgE and wheezing in childhood. Journal of Allergy and Clinical Immunology, 2011, 127, 1480-1485.	2.9	38

#	Article	IF	CITATIONS
109	Gene–environment interactions in the development of asthma and atopy. Expert Review of Respiratory Medicine, 2012, 6, 301-308.	2.5	37
110	Genetic susceptibility to allergic bronchopulmonary aspergillosis in asthma: a genetic association study. Allergy, Asthma and Clinical Immunology, 2016, 12, 47.	2.0	37
111	Modelling air pollution for epidemiologic research – Part II: Predicting temporal variation through land use regression. Science of the Total Environment, 2010, 409, 211-217.	8.0	36
112	Associations between particulate matter elements and early-life pneumonia in seven birth cohorts: Results from the ESCAPE and TRANSPHORM projects. International Journal of Hygiene and Environmental Health, 2014, 217, 819-829.	4.3	36
113	Variability of house-dust-mite allergen levels within carpets. Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 602-607.	5.7	35
114	Methylation of <i><scp>IL</scp>â€2</i> promoter at birth alters the risk of asthma exacerbations during childhood. Clinical and Experimental Allergy, 2013, 43, 304-311.	2.9	35
115	Genetic susceptibility to severe asthma with fungal sensitization. International Journal of Immunogenetics, 2017, 44, 93-106.	1.8	35
116	17q12-21 and asthma: interactions with early-life environmental exposures. Annals of Allergy, Asthma and Immunology, 2013, 110, 347-353.e2.	1.0	34
117	Effects of long-term exposure to PM10and NO2on asthma and wheeze in a prospective birth cohort. Journal of Epidemiology and Community Health, 2014, 68, 21-28.	3.7	34
118	Age, sex and the association between skin test responses and IgE titres with asthma. Pediatric Allergy and Immunology, 2016, 27, 313-319.	2.6	34
119	Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. Journal of Allergy and Clinical Immunology, 2014, 134, 46-55.	2.9	33
120	An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Science Translational Medicine, 2018, 10, .	12.4	33
121	Asthma severity, polymorphisms in 20p13 and their interaction with tobacco smoke exposure. Pediatric Allergy and Immunology, 2013, 24, 10-18.	2.6	32
122	Reduced expression of TLR3, TLR10 and TREM1 by human macrophages in Chronic cavitary pulmonary aspergillosis, and novel associations of VEGFA, DENND1B and PLAT. Clinical Microbiology and Infection, 2014, 20, O960-O968.	6.0	32
123	Crossâ€sectional association of dietary patterns with asthma and atopic sensitization in childhood – in a cohort study. Pediatric Allergy and Immunology, 2014, 25, 565-571.	2.6	32
124	Synthetic pillows contain higher levels of cat and dog allergen than feather pillows. Pediatric Allergy and Immunology, 2000, 11, 71-73.	2.6	31
125	Household characteristics and mite allergen levels in Manchester,UK. Clinical and Experimental Allergy, 2002, 32, 1413-1419.	2.9	31
126	Differing associations of BMI and body fat with asthma and lung function in children. Pediatric Pulmonology, 2014, 49, 1049-1057.	2.0	31

Angela N Simpson

#	Article	IF	CITATIONS
127	Atopic wheezing and early life antibiotic exposure: a nested case–control study. Pediatric Allergy and Immunology, 2006, 17, 184-188.	2.6	30
128	A prominent role for the IL1 pathway and IL15 in susceptibility to chronic cavitary pulmonary aspergillosis. Clinical Microbiology and Infection, 2014, 20, O480-O488.	6.0	30
129	The role of growth and nutrition in the early origins of spirometric restriction in adult life: a longitudinal, multicohort, population-based study. Lancet Respiratory Medicine,the, 2022, 10, 59-71.	10.7	30
130	Characterization of Low Molecular Weight Allergens from English Walnut (<i>Juglans regia</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 11767-11775.	5.2	29
131	Insoluble and soluble roasted walnut proteins retain antibody reactivity. Food Chemistry, 2016, 194, 1013-1021.	8.2	29
132	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
133	Mite allergens in feather and synthetic pillows. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 407-407.	5.7	28
134	Allergen avoidance in the secondary and tertiary prevention of allergic diseases: does it work?. Primary Care Respiratory Journal: Journal of the General Practice Airways Group, 2006, 15, 152-158.	2.3	28
135	Atopic Dermatitis and Respiratory Allergy: What is the Link. Current Dermatology Reports, 2015, 4, 221-227.	2.1	28
136	Differential associations of allergic disease genetic variants with developmental profiles of eczema, wheeze and rhinitis. Clinical and Experimental Allergy, 2019, 49, 1475-1486.	2.9	28
137	Does understanding endotypes translate to better asthma management options for all?. Journal of Allergy and Clinical Immunology, 2019, 144, 25-33.	2.9	28
138	Prevention of allergic sensitization by environmental control. Current Allergy and Asthma Reports, 2009, 9, 363-369.	5.3	27
139	The role of allergen avoidance in the secondary prevention of atopic disorders. Current Opinion in Allergy and Clinical Immunology, 2005, 5, 223-227.	2.3	26
140	Performance of a microenviromental model for estimating personal NO2 exposure in children. Atmospheric Environment, 2012, 51, 225-233.	4.1	26
141	Longitudinal trajectories of severe wheeze exacerbations from infancy to school age and their association with earlyâ€life risk factors and late asthma outcomes. Clinical and Experimental Allergy, 2020, 50, 315-324.	2.9	26
142	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
143	Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. IScience, 2022, 25, 103672.	4.1	25
144	Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations. Pediatric Allergy and Immunology, 2014, 25, 552-557.	2.6	24

#	Article	IF	CITATIONS
145	Early-life inhalant allergen exposure, filaggrin genotype, and the development of sensitization from infancy to adolescence. Journal of Allergy and Clinical Immunology, 2020, 145, 993-1001.	2.9	24
146	Challenges in Interpreting Wheeze Phenotypes: The Clinical Implications of Statistical Learning Techniques. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 121-123.	5.6	24
147	Allergy and infection: understanding their relationship. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 10-13.	5.7	23
148	Cat ownership, cat allergen exposure, and trajectories of sensitization and asthma throughout childhood. Journal of Allergy and Clinical Immunology, 2018, 141, 820-822.e7.	2.9	23
149	Different definitions of atopic dermatitis: impact on prevalence estimates and associated risk factors. British Journal of Dermatology, 2019, 181, 1272-1279.	1.5	23
150	Trajectories of childhood immune development and respiratory health relevant to asthma and allergy. ELife, 2018, 7, .	6.0	22
151	Modeling Wheezing Spells Identifies Phenotypes with Different Outcomes and Genetic Associates. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 883-893.	5.6	21
152	Development and validation of the food allergy severity score. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1545-1558.	5.7	19
153	Domestic allergen and endotoxin exposure and allergic sensitization in Cyprus. Pediatric Allergy and Immunology, 2006, 17, 17-21.	2.6	18
154	Asthma Diagnosis: The Changing Face of Guidelines. Pulmonary Therapy, 2019, 5, 103-115.	2.2	18
155	Housing characteristics and mite allergen levels: to humidity and beyond. Clinical and Experimental Allergy, 2001, 31, 803-805.	2.9	17
156	Elevated Levels of the Neutrophil Chemoattractant Pro–Platelet Basic Protein in Macrophages From Individuals With Chronic and Allergic Aspergillosis. Journal of Infectious Diseases, 2015, 211, 651-660.	4.0	17
157	Development of childhood asthma prediction models using machine learning approaches. Clinical and Translational Allergy, 2021, 11, e12076.	3.2	17
158	Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4. Nature Communications, 2021, 12, 6618.	12.8	17
159	Quantification of atopy, lung function and airway hypersensitivity in adults. Clinical and Translational Allergy, 2011, 1, 16.	3.2	16
160	Interaction between <i>glutathione Sâ€ŧransferase</i> variants, maternal smoking and childhood wheezing changes with age. Pediatric Allergy and Immunology, 2013, 24, 501-508.	2.6	16
161	Vacuum cleaners and airborne dog allergen. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 403-403.	5.7	14
162	Dust mite allergen avoidance as a preventive and therapeutic strategy. Current Allergy and Asthma Reports, 2006, 6, 521-526.	5.3	14

#	Article	IF	CITATIONS
163	Asthma diagnosis: into the fourth dimension. Thorax, 2021, 76, 624-631.	5.6	14
164	The impact of a baked muffin matrix on the bioaccessibility and IgE reactivity of egg and peanut allergens. Food Chemistry, 2021, 362, 129879.	8.2	14
165	Allergy is an important factor in asthma exacerbation: A Pro/Con Debate. Respirology, 2010, 15, 1021-1027.	2.3	13
166	Relationship between cytokine expression patterns and clinical outcomes: two populationâ€based birth cohorts. Clinical and Experimental Allergy, 2015, 45, 1801-1811.	2.9	13
167	Dust-mite inducing asthma: what advice can be given to patients?. Expert Review of Respiratory Medicine, 2019, 13, 929-936.	2.5	13
168	Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Research, 2021, 7, 00457-2021.	2.6	13
169	Earlyâ€life predictors and risk factors of peanut allergy, and its association with asthma in laterâ€life: Populationâ€based birth cohort study. Clinical and Experimental Allergy, 2022, 52, 646-657.	2.9	13
170	Environmental exposures, genetic predisposition and allergic diseases: one size never fits all. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 397-399.	5.7	12
171	Polymorphisms of endotoxin pathway and endotoxin exposure: <i>in vitro</i> IgE synthesis and replication in a birth cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1648-1658.	5.7	12
172	In vivo bronchial epithelial interferon responses are augmented in asthma on day 4 following experimental rhinovirus infection. Thorax, 2022, 77, 929-932.	5.6	12
173	Manchester cohort. Pediatric Pulmonology, 2004, 37, 12-13.	2.0	11
174	Increased serum-soluble interleukin-5 receptor alpha level precedes the development of eczema in children. Pediatric Allergy and Immunology, 2010, 21, 1052-1058.	2.6	11
175	Epistasis between FLG and IL4R Genes on the Risk of Allergic Sensitization: Results from Two Population-Based Birth Cohort Studies. Scientific Reports, 2018, 8, 3221.	3.3	11
176	Individual risk assessment tool for schoolâ€age asthma prediction in <scp>UK</scp> birth cohort. Clinical and Experimental Allergy, 2019, 49, 292-298.	2.9	11
177	The Effect of the Food Matrix on the In Vitro Bioâ€Accessibility and IgE Reactivity of Peanut Allergens. Molecular Nutrition and Food Research, 2020, 64, e1901093.	3.3	11
178	Modelling trajectories of parentally reported and physicianâ€confirmed atopic dermatitis in a birth cohort study*. British Journal of Dermatology, 2022, 186, 274-284.	1.5	11
179	What are we learning from genetic cohort studies?. Paediatric Respiratory Reviews, 2006, 7, S90-S92.	1.8	9
180	Nocturnal asthma is affected by genetic interactions between <i>RORA</i> and <i>NPSR1</i> . Pediatric Pulmonology, 2019, 54, 847-857.	2.0	9

#	Article	IF	CITATIONS
181	Integration of Genomic Risk Scores to Improve the Prediction of Childhood Asthma Diagnosis. Journal of Personalized Medicine, 2022, 12, 75.	2.5	8
182	Diagnosing Asthma with and without Aerosol-Generating Procedures. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 4243-4251.e7.	3.8	7
183	Manchester asthma and allergy study*1Polymorphisms in ADAM33 predict lung function at age 5 years. Journal of Allergy and Clinical Immunology, 2004, 113, S340.	2.9	6
184	A protocol for a systematic review to identify allergenic tree nuts and the molecules responsible for their allergenic properties. Food and Chemical Toxicology, 2017, 106, 411-416.	3.6	6
185	Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Scientific Reports, 2021, 11, 23741.	3.3	6
186	Long-Term Effects of Allergen Sensitization and Exposure in Adult Asthma. World Allergy Organization Journal, 2009, 2, 83-90.	3.5	5
187	Effect of household pet ownership on infant immune response and subsequent sensitization. Journal of Asthma and Allergy, 2010, 3, 131.	3.4	5
188	Interaction between filaggrin mutations and neonatal cat exposure in atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1481-1485.	5.7	5
189	Genetics of Asthma and Allergic Diseases. Handbook of Experimental Pharmacology, 2021, 268, 313-329.	1.8	5
190	The role of allergen avoidance in primary and secondary prevention. Pediatric Pulmonology, 2004, 37, 225-228.	2.0	3
191	Childhood CCL18, CXCL10 and CXCL11 levels differentially relate to and predict allergy development. Pediatric Allergy and Immunology, 2021, 32, 1824-1832.	2.6	3
192	DUST MITE. , 2006, , 54-59.		2
193	Household characteristics and allergen and endotoxin levels in Aleppo, Syrian Arab Republic. Eastern Mediterranean Health Journal, 2010, 16, 717-724.	0.8	2
194	Neurturin regulates the lung-resident macrophage inflammatory response to viral infection. Life Science Alliance, 2020, 3, e202000780.	2.8	2
195	An eHealth Approach to Reporting Allergic Reactions to Food and Closing the Knowledge Gap. Studies in Health Technology and Informatics, 2015, 216, 320-4.	0.3	2
196	Chronic plantar ulcer secondary to congenital indifference to pain. Journal of Wound Care, 2011, 20, 540-542.	1.2	1
197	Antigenic interrelationships among mite allergens (Blomia andDermatophagoides spp). Clinical Reviews in Allergy and Immunology, 1997, 15, 461-469.	6.5	0
198	Pet Ownership and Exposure to Indoor Allergens—Reply. JAMA Pediatrics, 2005, 159, 400.	3.0	0

#	Article	IF	CITATIONS
199	Immune System Modeling with Infer.NET. , 2008, , .		0
200	The importance of the environment and asthma outcomes. Paediatric Respiratory Reviews, 2011, 12, S8.	1.8	0
201	S130â€Axl receptor tyrosine kinase on airway macrophages has a key role in lung immune homeostasis. Thorax, 2015, 70, A74.1-A74.	5.6	0
202	The effect of thermal processing on the allergenic activity of peanuts. Clinical and Translational Allergy, 2015, 5, P113.	3.2	0
203	P111â€Exhaled breath biomarkers in pulmonary aspergillosis. , 2017, , .		0
204	P16â€Can FeNO be used to optimise management of asthma?. , 2019, , .		0
205	S36â€Improving asthma care in the emergency department (ED): a 2-year prospective quality improvement (QI) project. , 2019, , .		0
206	Circulating CC16 Deficits and Frequent Asthma from Childhood Through Adult Life. , 2020, , .		0
207	Early-Life Nutritional Status and Spirometric Restriction in Adult Life. , 2020, , .		0
208	P058 Persistence of neutrophil abnormalities in COVID-19 convalescence. Rheumatology, 2021, 60, .	1.9	0
209	P121â€Does methacholine challenge test improve asthma diagnostic certainty in children age 5–16yr?. , 2021, , .		0
210	Nonlinear effects of environment on childhood asthma susceptibility. Pediatric Allergy and Immunology, 2022, 33, e13777.	2.6	0
211	Food allergy in adults. InnovAiT, 0, , 175573802211068.	0.0	0