Paula Diaconescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489269/publications.pdf

Version: 2024-02-01

66343 85541 5,863 109 42 71 citations h-index g-index papers 111 111 111 4293 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semiâ€Heterogeneous Catalyst in Water. Angewandte Chemie - International Edition, 2007, 46, 7251-7254.	13.8	414
2	Arene-Bridged Diuranium Complexes: Â Inverted Sandwiches Supported by \hat{l} Backbonding. Journal of the American Chemical Society, 2000, 122, 6108-6109.	13.7	281
3	Redox Control of Group 4 Metal Ring-Opening Polymerization Activity toward <scp>l</scp> -Lactide and ε-Caprolactone. Journal of the American Chemical Society, 2014, 136, 11264-11267.	13.7	235
4	Redox Control of a Ring-Opening Polymerization Catalyst. Journal of the American Chemical Society, 2011, 133, 9278-9281.	13.7	233
5	Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy ^{III} Single-Molecule Magnets. Journal of the American Chemical Society, 2017, 139, 1420-1423.	13.7	186
6	Redox control of a polymerization catalyst by changing the oxidation state of the metal center. Chemical Communications, 2011, 47, 9897.	4.1	138
7	Diuranium Inverted Sandwiches Involving Naphthalene and Cyclooctatetraene. Journal of the American Chemical Society, 2002, 124, 7660-7661.	13.7	132
8	A Weak Interaction between Iron and Uranium in Uranium Alkyl Complexes Supported by Ferrocene Diamide Ligands. Organometallics, 2008, 27, 1702-1706.	2.3	116
9	Facile Synthesis of Trialkoxymolybdenum(VI) Alkylidyne Complexes for Alkyne Metathesis. Organometallics, 2000, 19, 5260-5262.	2.3	103
10	Reactions of Aromatic N-Heterocycles with d ⁰ f ^{<i>n</i>} -Metal Alkyl Complexes Supported by Chelating Diamide Ligands. Accounts of Chemical Research, 2010, 43, 1352-1363.	15.6	103
11	Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. Journal of the American Chemical Society, 2017, 139, 9807-9810.	13.7	103
12	Redox-Switchable Ring-Opening Polymerization with Ferrocene Derivatives. Accounts of Chemical Research, 2019, 52, 415-424.	15.6	101
13	Redox Processes in a Uranium Bis(1,1 -diamidoferrocene) Complex. Inorganic Chemistry, 2007, 46, 7226-7228.	4.0	98
14	P4 activation by group 3 metal arene complexes. Chemical Communications, 2012, 48, 2216.	4.1	91
15	Scandium Alkyl Complexes Supported by a Ferrocene Diamide Ligand. Organometallics, 2008, 27, 363-370.	2.3	89
16	Ring-Opening Reactions of Aromatic N-Heterocycles by Scandium and Yttrium Alkyl Complexes. Journal of the American Chemical Society, 2008, 130, 7558-7559.	13.7	89
17	Synthesis and Characterization of Cerium and Yttrium Alkoxide Complexes Supported by Ferrocene-Based Chelating Ligands. Inorganic Chemistry, 2011, 50, 2870-2877.	4.0	88
18	Investigations of the Electronic Structure of Arene-Bridged Diuranium Complexes. Organometallics, 2013, 32, 1341-1352.	2.3	87

#	Article	IF	CITATIONS
19	Cerium(IV) Catalysts for the Ring-Opening Polymerization of Lactide. Inorganic Chemistry, 2009, 48, 4701-4706.	4.0	84
20	Scandium Arene Inverted-Sandwich Complexes Supported by a Ferrocene Diamide Ligand. Journal of the American Chemical Society, 2011, 133, 10410-10413.	13.7	83
21	Methine (CH) Transfer via a Chlorine Atom Abstraction/Benzene-Elimination Strategy:Â Molybdenum Methylidyne Synthesis and Elaboration to a Phosphaisocyanide Complex. Journal of the American Chemical Society, 2002, 124, 2412-2413.	13.7	77
22	Molecular quadrangle formation from a diuranium $\hat{l}/4-\hat{l}\cdot6$, $\hat{l}\cdot6$ -toluene complex. Chemical Communications, 2011, 47, 9119.	4.1	75
23	Redox Switchable Copolymerization of Cyclic Esters and Epoxides by a Zirconium Complex. Macromolecules, 2016, 49, 6768-6778.	4.8	73
24	μ-η ⁶ ,η ⁶ -Arene-Bridged Diuranium Hexakisketimide Complexes Isolable in Two States of Charge. Inorganic Chemistry, 2012, 51, 2902-2916.	4.0	71
25	Inter- and Intramolecular Hydroamination with a Uranium Dialkyl Precursor. Organometallics, 2010, 29, 3242-3251.	2.3	68
26	Synthesis, characterization, and anticancer activity of Schiff bases. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3246-3259.	3.5	68
27	Dearomatization Reactions of N-Heterocycles Mediated by Group 3 Complexes. Journal of the American Chemical Society, 2010, 132, 342-355.	13.7	61
28	Uraniumâ^'Group 14 Element Single Bonds:Â Isolation and Characterization of a Uranium(IV) Silyl Species. Organometallics, 2001, 20, 4993-4995.	2.3	60
29	Beyond CH Activation with Uranium: A Cascade of Reactions Mediated by a Uranium Dialkyl Complex. Angewandte Chemie - International Edition, 2009, 48, 8352-8355.	13.8	57
30	A six-carbon 10Ï€-electron aromatic system supported by group 3 metals. Nature Communications, 2013, 4, 1448.	12.8	57
31	Reversible Câ^'C Coupling in a Uranium Biheterocyclic Complex. Journal of the American Chemical Society, 2010, 132, 7676-7683.	13.7	56
32	P ₄ Activation by Lanthanum and Lutetium Naphthalene Complexes Supported by a Ferrocene Diamide Ligand. European Journal of Inorganic Chemistry, 2013, 2013, 4090-4096.	2.0	56
33	Redox Control of Aluminum Ring-Opening Polymerization: A Combined Experimental and DFT Investigation. Macromolecules, 2017, 50, 1847-1861.	4.8	56
34	High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters. Chemical Communications, 2015, 51, 9643-9646.	4.1	55
35	Terminal Phosphide and Dinitrogen Molybdenum Compounds Obtained from Pnictide-Bridged Precursors. Inorganic Chemistry, 2001, 40, 6860-6862.	4.0	54
36	Reactions of Group III Biheterocyclic Complexes. Journal of the American Chemical Society, 2009, 131, 10269-10278.	13.7	54

#	Article	IF	Citations
37	Organic Nitriles from Acid Chlorides:  An Isovalent N for (O)Cl Exchange Reaction Mediated by a Tungsten Nitride Complex. Journal of the American Chemical Society, 2004, 126, 7742-7743.	13.7	49
38	In situ generation of uranium alkyl complexes. Chemical Communications, 2010, 46, 3390.	4.1	49
39	Tetraanionic Biphenyl Lanthanide Complexes as Single-Molecule Magnets. Inorganic Chemistry, 2015, 54, 2374-2382.	4.0	49
40	Synthesis and Structural Studies of Chiral Indium(III) Complexes Supported by Tridentate Diaminophenol Ligands. Inorganic Chemistry, 2010, 49, 5444-5452.	4.0	48
41	Coupling of Aromatic N-Heterocycles Mediated by Group 3 Complexes. Organometallics, 2010, 29, 835-846.	2.3	47
42	Palladium(II) and Platinum(II) Compounds of $1,1\hat{a}\in^2$ -Bis(phosphino)metallocene (M = Fe, Ru) Ligands with Metal $\hat{a}\in^\infty$ Metal Interactions. Organometallics, 2013, 32, 5966-5979.	2.3	45
43	Radical Scission of Symmetrical 1,4-Dicarbonyl Compounds:  Câ^C Bond Cleavage with Titanium(IV) Enolate Formation and Related Reactions. Organometallics, 2002, 21, 1329-1340.	2.3	43
44	A Sterically Demanding Enolate Ligand:Â Tantalum Ligation and Pyridine Coupling. Organometallics, 2004, 23, 498-503.	2.3	43
45	Redox-Switchable Hydroelementation of a Cobalt Complex Supported by a Ferrocene-Based Ligand. Organometallics, 2016, 35, 2446-2453.	2.3	43
46	Coordination Chemistry of a Chelating Amidoximato Ligand. Inorganic Chemistry, 2001, 40, 2892-2897.	4.0	42
47	Transmetalation Reactions of a Scandium Complex Supported by a Ferrocene Diamide Ligand. Inorganic Chemistry, 2011, 50, 978-984.	4.0	42
48	The riches of uranium. Nature Chemistry, 2010, 2, 424-424.	13.6	41
49	Reactivity and Properties of Metal Complexes Enabled by Flexible and Redox-Active Ligands with a Ferrocene Backbone. Inorganic Chemistry, 2016, 55, 10013-10023.	4.0	41
50	Group 3 Metal Complexes of Radical-Anionic 2,2′-Bipyridyl Ligands. Inorganic Chemistry, 2010, 49, 11493-11498.	4.0	39
51	d ⁰ f ^N -METAL COMPLEXES SUPPORTED BY FERROCENE-BASED CHELATING LIGANDS. Comments on Inorganic Chemistry, 2010, 31, 196-241.	5.2	39
52	Rare-earth metal π-complexes of reduced arenes, alkenes, and alkynes: bonding, electronic structure, and comparison with actinides and other electropositive metals. Dalton Transactions, 2015, 44, 15360-15371.	3.3	39
53	Switchable Polymerization of Norbornene Derivatives by a Ferroceneâ€Palladium(II) Heteroscorpionate Complex. European Journal of Inorganic Chemistry, 2016, 2016, 2634-2640.	2.0	38
54	Switchable Ringâ€Opening Polymerization by a Ferrocene Supported Aluminum Complex. ChemCatChem, 2019, 11, 4210-4218.	3.7	38

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Paramagnetic Lanthanide Benzyl Complexes. Organometallics, 2013, 32, 1379-1386.	2.3	37
56	Characterization of an Iron–Ruthenium Interaction in a Ferrocene Diamide Complex. Inorganic Chemistry, 2013, 52, 5603-5610.	4.0	37
57	Reactions of Aromatic Heterocycles with Uranium Alkyl Complexes. Inorganic Chemistry, 2010, 49, 7165-7169.	4.0	36
58	Complexes of Gold(I), Silver(I), and Copper(I) with Pentaaryl[60]fullerides. Journal of the American Chemical Society, 2011, 133, 6841-6851.	13.7	36
59	Highly Active Yttrium Catalysts for the Ring-Opening Polymerization of Îμ-Caprolactone and δ-Valerolactone. Organometallics, 2015, 34, 4700-4706.	2.3	36
60	A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide. Inorganic Chemistry, 2017, 56, 1375-1385.	4.0	36
61	Mechanistic Studies of Redox-Switchable Copolymerization of Lactide and Cyclohexene Oxide by a Zirconium Complex. Organometallics, 2017, 36, 4451-4457.	2.3	36
62	Reactions of Early Transition Metal – Carbon Bonds with N-Heterocycles. Current Organic Chemistry, 2008, 12, 1388-1405.	1.6	35
63	Phosphine-Tethered Carbene Ligands: Template Synthesis and Reactivity of Cyclic and Acyclic Functionalized Carbenes. Organometallics, 2010, 29, 6065-6076.	2.3	35
64	Molybdenumâ^'Phosphorus Triple Bond Stabilization by Ancillary Alkoxide Ligation:Â Synthesis and Structure of a Terminal Phosphide Tris-1-methylcyclohexanoxide Complex. Journal of the American Chemical Society, 2003, 125, 9264-9265.	13.7	34
65	Investigation of redox switchable titanium and zirconium catalysts for the ring opening polymerization of cyclic esters and epoxides. Inorganic Chemistry Frontiers, 2017, 4, 1798-1805.	6.0	33
66	Reactions of Aromatic N-Heterocycles with Yttrium and Lutetium Benzyl Complexes Supported by a Pyridine-Diamide Ligand. Organometallics, 2010, 29, 1222-1230.	2.3	32
67	Group 3 metal stilbene complexes: synthesis, reactivity, and electronic structure studies. Chemical Communications, 2014, 50, 5221-5223.	4.1	31
68	On the Mechanism of the Conversion of Methanol to 2,2,3-Trimethylbutane (Triptane) over Zinc Iodide. Journal of Organic Chemistry, 2006, 71, 8907-8917.	3.2	29
69	Insertion reactions of scandium pyridyl complexes supported by a ferrocene diamide ligand. Journal of Alloys and Compounds, 2009, 488, 518-523.	5.5	29
70	Aromatic C–F Bond Activation by Rare-Earth-Metal Complexes. Organometallics, 2017, 36, 89-96.	2.3	29
71	Preparation of multiblock copolymers <i>via</i> step-wise addition of <scp>I</scp> -lactide and trimethylene carbonate. Chemical Science, 2018, 9, 2168-2178.	7.4	28
72	An Unusual Hydrogen Migration/Câ^'H Activation Reaction with Group 3 Metals. Journal of the American Chemical Society, 2011, 133, 4680-4683.	13.7	27

#	Article	IF	CITATIONS
73	Investigation of the Electronic Structure of Mono(1,1 \hat{a} e²-Diamidoferrocene) Uranium(IV) Complexes. Organometallics, 2013, 32, 6012-6021.	2.3	27
74	Arene-Bridged Dithorium Complexes: Inverse Sandwiches Supported by a \hat{l} Bonding Interaction. Journal of the American Chemical Society, 2020, 142, 21292-21297.	13.7	27
75	Bimetallic Cleavage of Aromatic C–H Bonds by Rare-Earth-Metal Complexes. Journal of the American Chemical Society, 2014, 136, 17410-17413.	13.7	26
76	Ferrocene-bis(phosphinimine) Nickel(II) and Palladium(II) Alkyl Complexes: Influence of the Fe–M (M =) Tj ETQc	0 0 0 rgBT 2.3	Oyerlock 10
77	Investigation of a zirconium compound for redox switchable ring opening polymerization. Dalton Transactions, 2019, 48, 2996-3002.	3.3	24
78	Reactions of Imidazoles with Electrophilic Metal Alkyl Complexes. Organometallics, 2010, 29, 2272-2281.	2.3	23
79	Radical anionic versus neutral 2,2′-bipyridyl coordination in uranium complexes supported by amide and ketimide ligands. Dalton Transactions, 2015, 44, 2676-2683.	3.3	23
80	Theoretical insight into the redox-switchable activity of group 4 metal complexes for the ring-opening polymerization of $\hat{l}\mu$ -caprolactone. Inorganic Chemistry Frontiers, 2020, 7, 961-971.	6.0	23
81	Reactions of aromatic N-heterocycles with a lutetium benzyl complex supported by a ferrocene-diamide ligand. Dalton Transactions, 2010, 39, 6726.	3.3	22
82	Synthesis and Characterization of Ferrocene-Chelating Heteroscorpionate Complexes of Nickel(II) and Zinc(II). Inorganic Chemistry, 2015, 54, 1778-1784.	4.0	21
83	Conversion of Methanol to 2,2,3-Trimethylbutane (Triptane) over Indium(III) lodide. Inorganic Chemistry, 2007, 46, 11371-11380.	4.0	20
84	A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorganic Chemistry Frontiers, 2015, 2, 35-41.	6.0	20
85	Reduction of Diphenylacetylene Mediated by Rare-Earth Ferrocene Diamide Complexes. Organometallics, 2017, 36, 4643-4648.	2.3	20
86	Computational mapping of redox-switchable metal complexes based on ferrocene derivatives. Chemical Communications, 2019, 55, 7021-7024.	4.1	20
87	ABC and ABAB Block Copolymers by Electrochemically Controlled Ring-Opening Polymerization. Journal of the American Chemical Society, 2021, 143, 19802-19808.	13.7	20
88	An experimental and computational study of 1,1′-ferrocene diamines. Polyhedron, 2013, 52, 377-388.	2.2	19
89	Synthesis of ferrocene-functionalized monomers for biodegradable polymer formation. Inorganic Chemistry Frontiers, 2014, 1, 271.	6.0	19
90	Yttrium-Alkyl Complexes Supported by a Ferrocene-Based Phosphinimine Ligand. Organometallics, 2015, 34, 2567-2572.	2.3	19

#	Article	IF	Citations
91	Structural, Computational, and Spectroscopic Investigation of $[Pd(\hat{I}^2 < sup > 3 < lsup > -1, 1 \hat{a} \in 2^2 -bis(di < i > tert < li > -butylphosphino) ferrocenediyl)X] < sup > + < sup > (X = Cl, Br, I) Compounds. Organometallics, 2016, 35, 462-470.$	2.3	19
92	Zirconium complexes supported by a ferrocene-based ligand as redox switches for hydroamination reactions. Chemical Communications, 2019, 55, 5587-5590.	4.1	19
93	Developing a Virtual Reality Approach toward a Better Understanding of Coordination Chemistry and Molecular Orbitals. Journal of Chemical Education, 2020, 97, 3647-3651.	2.3	18
94	Geometry Change in a Series of Zirconium Compounds during Lactide Ring-Opening Polymerization. Organometallics, 2018, 37, 4040-4047.	2.3	17
95	Ring opening of aromatic heterocycles by uranium complexes. Journal of Organometallic Chemistry, 2010, 695, 2822-2826.	1.8	16
96	CH Bond Activation of Hydrocarbons Mediated by Rare-Earth Metals and Actinides. Advances in Organometallic Chemistry, 2015, , 41-75.	1.0	16
97	Transfer hydrogenation with a ferrocene diamide ruthenium complex. Dalton Transactions, 2012, 41, 7852.	3.3	15
98	Synthesis and Characterization of Single-Phase Metal Dodecaboride Solid Solutions: Zr _{1â€"<i>x</i>} Y _{<i>x</i>} B ₁₂ and Zr _{1â€"<i>x</i>} U _{<i>x</i>} B ₁₂ . Journal of the American Chemical Society, 2019, 141, 9047-9062.	13.7	15
99	In situ synthesis of lanthanide complexes supported by a ferrocene diamide ligand: extension to redox-active lanthanide ions. New Journal of Chemistry, 2015, 39, 7696-7702.	2.8	14
100	Monodentate phosphine substitution in $ [Pd(\hat{l}^{\circ}(sup) - dppf)(PR(sub) - 3(sub))] [BF(sub) - 4(sub)] < sub) < 2(sub) (dppf =) Tj ETQq0 0 0 rgBT /Ove $	rlo ck 310 Tf	F 5 0 - 3 77 Td (1
101	Exploring Oxidation State-Dependent Selectivity in Polymerization of Cyclic Esters and Carbonates with Zinc(II) Complexes. IScience, 2018, 7, 120-131.	4.1	13
102	Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. Chemical Science, 2021, 12, 227-238.	7.4	12
103	Visible-light-induced reversible C–C bond formation of an imidazole-derived scandium complex. Inorganica Chimica Acta, 2012, 380, 274-277.	2.4	10
104	New triorganotin(<scp>iv</scp>) compounds with aromatic carboxylate ligands: synthesis and evaluation of the pro-apoptotic mechanism. RSC Advances, 2021, 11, 4499-4514.	3.6	10
105	Synthesis of symmetrically and unsymmetrically 3,5-dimethylbenzyl-substituted 1,1′-ferrocene diamines. Journal of Organometallic Chemistry, 2011, 696, 4090-4094.	1.8	9
106	A switchable dimeric yttrium complex and its three catalytic states in ring opening polymerization. Inorganic Chemistry Frontiers, 2021, 8, 2088-2096.	6.0	9
107	Triorganotin (IV) carboxylates as potential anticancer agents: Their synthesis, physiochemical characterization, and cytotoxic activity against HeLa and MCFâ€7 cancer cells. Applied Organometallic Chemistry, 2021, 35, e6165.	3.5	8
108	A generalized kinetic model for compartmentalization of organometallic catalysis. Chemical Science, 2022, 13, 1101-1110.	7.4	6

#	Article	IF	CITATIONS
109	A photoswitchable organocatalyst controls trimethylene carbonate and $\hat{\Gamma}$ -valerolactone copolymerization. Science Bulletin, 2018, 63, 1460-1461.	9.0	1