
Stephen A Graves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8489219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hexamodal Imaging with Porphyrinâ€Phospholipidâ€Coated Upconversion Nanoparticles. Advanced Materials, 2015, 27, 1785-1790.	21.0	189
2	<i>In Vivo</i> Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano, 2015, 9, 3926-3934.	14.6	155
3	Preclinical Pharmacokinetics and Biodistribution Studies of ⁸⁹ Zr-Labeled Pembrolizumab. Journal of Nuclear Medicine, 2017, 58, 162-168.	5.0	152
4	Red Fluorescent Zinc Oxide Nanoparticle: A Novel Platform for Cancer Targeting. ACS Applied Materials & Interfaces, 2015, 7, 3373-3381.	8.0	84
5	⁵² Mn Production for PET/MRI Tracking Of Human Stem Cells Expressing Divalent Metal Transporter 1 (DMT1). Theranostics, 2015, 5, 227-239.	10.0	80
6	Novel Preparation Methods of ⁵² Mn for ImmunoPET Imaging. Bioconjugate Chemistry, 2015, 26, 2118-2124.	3.6	74
7	Engineering Intrinsically Zirconiumâ€89 Radiolabeled Selfâ€Destructing Mesoporous Silica Nanostructures for In Vivo Biodistribution and Tumor Targeting Studies. Advanced Science, 2016, 3, 1600122.	11.2	70
8	Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin. Applied Radiation and Isotopes, 2015, 95, 23-29.	1.5	66
9	Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles. Small, 2016, 12, 2775-2782.	10.0	66
10	Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials, 2016, 100, 101-109.	11.4	61
11	Commissioning of a 1.5T Elekta Unity MRâ€linac: A single institution experience. Journal of Applied Clinical Medical Physics, 2020, 21, 160-172.	1.9	61
12	A porphyrin-PEG polymer with rapid renal clearance. Biomaterials, 2016, 76, 25-32.	11.4	60
13	Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale, 2016, 8, 12683-12692.	5.6	58
14	Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12806-12811.	7.1	54
15	Targeting CD146 with a ⁶⁴ Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6525-34.	7.1	54
16	Accelerated Blood Clearance Phenomenon Reduces the Passive Targeting of PEGylated Nanoparticles in Peripheral Arterial Disease. ACS Applied Materials & Interfaces, 2016, 8, 17955-17963.	8.0	48
17	Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2017, 9, 38304-38312.	8.0	47
18	Optimized procedures for manganese-52: Production, separation and radiolabeling. Applied Radiation and Isotopes, 2017, 121, 38-43.	1.5	37

STEPHEN A GRAVES

#	Article	IF	CITATIONS
19	ImmunoPET of tissue factor expression in triple-negative breast cancer with a radiolabeled antibody Fab fragment. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1295-1303.	6.4	36
20	ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment. Molecular Pharmaceutics, 2017, 14, 1646-1655.	4.6	36
21	PET Imaging of Abdominal Aortic Aneurysm with ⁶⁴ Cu-Labeled Anti-CD105 Antibody Fab Fragment. Journal of Nuclear Medicine, 2015, 56, 927-932.	5.0	35
22	lsotope harvesting at FRIB: additional opportunities for scientific discovery. Journal of Physics G: Nuclear and Particle Physics, 2019, 46, 100501.	3.6	35
23	Radiomanganese PET Detects Changes in Functional β-Cell Mass in Mouse Models of Diabetes. Diabetes, 2017, 66, 2163-2174.	0.6	32
24	In Vivo Tumor-Targeted Dual-Modality PET/Optical Imaging with a Yolk/Shell-Structured Silica Nanosystem. Nano-Micro Letters, 2018, 10, 65.	27.0	31
25	Dual Targeting of Tissue Factor and CD105 for Preclinical PET Imaging of Pancreatic Cancer. Clinical Cancer Research, 2016, 22, 3821-3830.	7.0	30
26	PET Imaging of VEGFR-2 Expression in Lung Cancer with ⁶⁴ Cu-Labeled Ramucirumab. Journal of Nuclear Medicine, 2016, 57, 285-290.	5.0	30
27	Cyclotron production and radiochemical separation of 55Co and 58mCo from 54Fe, 58Ni and 57Fe targets. Applied Radiation and Isotopes, 2017, 130, 90-101.	1.5	30
28	Commissioning and performance evaluation of RadCalc for the Elekta unity MRIâ€linac. Journal of Applied Clinical Medical Physics, 2019, 20, 54-62.	1.9	30
29	Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for <i>In Vivo</i> Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Journal of Biomedical Nanotechnology, 2018, 14, 900-909.	1.1	29
30	CD38 as a PET Imaging Target in Lung Cancer. Molecular Pharmaceutics, 2017, 14, 2400-2406.	4.6	25
31	Dose point kernels for 2,174 radionuclides. Medical Physics, 2019, 46, 5284-5293.	3.0	25
32	PET of Follicle-Stimulating Hormone Receptor: Broad Applicability to Cancer Imaging. Molecular Pharmaceutics, 2015, 12, 403-410.	4.6	23
33	ImmunoPET for assessing the differential uptake of a CD146-specific monoclonal antibody in lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2169-2179.	6.4	23
34	203/212Pb Theranostic Radiopharmaceuticals for Image-guided Radionuclide Therapy for Cancer. Current Medicinal Chemistry, 2020, 27, 7003-7031.	2.4	23
35	Uptake and retention of manganese contrast agents for PET and MRI in the rodent brain. Contrast Media and Molecular Imaging, 2016, 11, 371-380.	0.8	22
36	Preparation and in vivo characterization of 51MnCl2 as PET tracer of Ca2+ channel-mediated transport. Scientific Reports, 2017, 7, 3033.	3.3	22

STEPHEN A GRAVES

#	Article	IF	CITATIONS
37	PET of c-Met in Cancer with ⁶⁴ Cu-Labeled Hepatocyte Growth Factor. Journal of Nuclear Medicine, 2015, 56, 758-763.	5.0	21
38	Nuclear excitation functions of proton-induced reactions (Ep= 35–90 MeV) from Fe, Cu, and Al. Nuclear Instruments & Methods in Physics Research B, 2016, 386, 44-53.	1.4	19
39	Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources. Journal of Nuclear Medicine, 2021, 62, 3S-11S.	5.0	19
40	Evaluation of two novel 64Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin αvβ3. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1859-1868.	6.4	17
41	Evaluation of a chloride-based 89Zr isolation strategy using a tributyl phosphate (TBP)-functionalized extraction resin. Nuclear Medicine and Biology, 2018, 64-65, 1-7.	0.6	17
42	Dosimetry for Optimized, Personalized Radiopharmaceutical Therapy. Seminars in Radiation Oncology, 2021, 31, 37-44.	2.2	17
43	Imaging and dosimetric characteristics of ⁶⁷ Cu. Physics in Medicine and Biology, 2021, 66, 035002.	3.0	17
44	Excitation functions for (p,x) reactions of niobium in the energy range of Ep = 40–90 MeV. Nuclear Instruments & Methods in Physics Research B, 2018, 429, 53-74.	1.4	15
45	Tumor Response to Radiopharmaceutical Therapies: The Knowns and the Unknowns. Journal of Nuclear Medicine, 2021, 62, 12S-22S.	5.0	14
46	Spot-welding solid targets for high current cyclotron irradiation. Applied Radiation and Isotopes, 2016, 118, 350-353.	1.5	13
47	Polyazamacrocycle Ligands Facilitate ⁸⁹ Zr Radiochemistry and Yield ⁸⁹ Zr Complexes with Remarkable Stability. Inorganic Chemistry, 2020, 59, 17473-17487.	4.0	13
48	Prostate-Specific Membrane Antigen (PSMA) Theranostics for Treatment of Oligometastatic Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 12095.	4.1	13
49	Radiopharmaceutical Chemistry and Drug Development—What's Changed?. Seminars in Radiation Oncology, 2021, 31, 3-11.	2.2	11
50	Addition of ¹³¹ I-MIBG to PRRT (⁹⁰ Y-DOTATOC) for Personalized Treatment of Selected Patients with Neuroendocrine Tumors. Journal of Nuclear Medicine, 2021, 62, 1274-1277.	5.0	11
51	Reimbursement Approaches for Radiopharmaceutical Dosimetry: Current Status and Future Opportunities. Journal of Nuclear Medicine, 2021, 62, 48S-59S.	5.0	11
52	The Impact of Radiopharmaceutical Therapy on Renal Function. Seminars in Nuclear Medicine, 2022, 52, 467-474.	4.6	9
53	Generation and Screening of Monoclonal Antibodies for ImmunoPET Imaging of IGF1R in Prostate Cancer. Molecular Pharmaceutics, 2014, 11, 3624-3630.	4.6	7
54	Development of a novel linearly-filled Derenzo microPET phantom. American Journal of Nuclear Medicine and Molecular Imaging, 2016, 6, 199-204.	1.0	7

STEPHEN A GRAVES

#	Article	IF	CITATIONS
55	Monte Carlo evaluation of hypothetical long axial fieldâ€ofâ€view PET scanner using GE Discovery MI PET frontâ€end architecture. Medical Physics, 2022, 49, 1139-1152.	3.0	7
56	Auger electron-based targeted radioimmunotherapy with 58mCo, a feasibility study. AIP Conference Proceedings, 2016, , .	0.4	6
57	Quantification of uptake in pelvis Fâ€18 FLT PETâ€CT images using a 3D localization and segmentation CNN. Medical Physics, 2022, 49, 1585-1598.	3.0	6
58	Absorbed dose distributions from betaâ€decaying radionuclides: Experimental validation of Monte Carlo tools for radiopharmaceutical dosimetry. Medical Physics, 2020, 47, 5779-5790.	3.0	5
59	Proton-induced reactions on Fe, Cu, and Ti from threshold to 55 MeV. European Physical Journal A, 2021, 57, 1.	2.5	5
60	SIR-Spheres activity measurements reveal systematic miscalibration. Journal of Nuclear Medicine, 2022, , jnumed.121.262650.	5.0	5
61	Half-life of Mn51. Physical Review C, 2017, 96, .	2.9	4
62	Simplified and reproducible radiochemical separations for the production of high specific activity 61Cu, 64Cu, 86Y and 55Co. AIP Conference Proceedings, 2017, , .	0.4	3
63	Half-life of ⁶⁷ Cu. Journal of Physics Communications, 2021, 5, 085007.	1.2	3
64	Radiobromine production, isolation and radiosynthesis for the development of a novel prostate cancer radiotherapeutic agent. AIP Conference Proceedings, 2017, , .	0.4	2
65	Earth, air, fire and water: A targetry quartet. AIP Conference Proceedings, 2017, , .	0.4	1
66	Development and characterization of a hexamodal imaging nanoparticle. , 2015, , .		0
67	Practical Considerations for Implementation of ¹⁷⁷ Lu-DOTATATE Neuroendocrine Tumor Treatment Programs. Journal of Nuclear Medicine Technology, 2022, 50, 195-202.	0.8	0