
Marc Haenlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8487584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two Isoforms of serpent Containing Either One or Two GATA Zinc Fingers Provide Functional Diversity During Drosophila Development. Frontiers in Cell and Developmental Biology, 2021, 9, 795680.	3.7	0
2	A dual role of dLsd1 in oogenesis: regulating developmental genes and repressing transposons. Nucleic Acids Research, 2020, 48, 1206-1224.	14.5	5
3	Drosophila Mediator Subunit Med1 Is Required for GATA-Dependent Developmental Processes: Divergent Binding Interfaces for Conserved Coactivator Functions. Molecular and Cellular Biology, 2019, 39, .	2.3	4
4	Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genetics, 2017, 13, e1006932.	3.5	19
5	Blood cell progenitor maintenance: Collier barks out of the niche. Fly, 2015, 9, 160-164.	1.7	3
6	Haematopoietic progenitor maintenance by EBF/Collier: beyond the Niche. Cell Cycle, 2015, 14, 3517-3518.	2.6	6
7	The EBF transcription factor Collier directly promotes <i>Drosophila</i> blood cell progenitor maintenance independently of the niche. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9052-9057.	7.1	69
8	Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia, 2014, 28, 1271-1279.	7.2	39
9	Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in <i>Drosophila</i> . Development (Cambridge), 2012, 139, 1713-1717.	2.5	86
10	Myeloid leukemia factor. Transcription, 2012, 3, 250-254.	3.1	15
11	Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4986-4991.	7.1	27
12	Modeling Cancers in Drosophila. Progress in Molecular Biology and Translational Science, 2011, 100, 51-82.	1.7	16
13	The Ly6 Protein Coiled Is Required for Septate Junction and Blood Brain Barrier Organisation in Drosophila. PLoS ONE, 2011, 6, e17763.	2.5	24
14	An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogasterblood cell homeostasis. BMC Developmental Biology, 2010, 10, 65.	2.1	74
15	Transcription factor interplay during Drosophila haematopoiesis. International Journal of Developmental Biology, 2010, 54, 1107-1115.	0.6	30
16	A Genome-Wide RNA Interference Screen Identifies a Differential Role of the Mediator CDK8 Module Subunits for GATA/ RUNX-Activated Transcription in <i>Drosophila</i> . Molecular and Cellular Biology, 2010, 30, 2837-2848.	2.3	34
17	A <i>Drosophila</i> model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12043-12048.	7.1	46
18	<i>boudin</i> is required for septate junction organisation in <i>Drosophila</i> and codes for a diffusible protein of the Ly6 superfamily. Development (Cambridge), 2009, 136, 2199-2209.	2.5	72

MARC HAENLIN

#	Article	IF	CITATIONS
19	A GATA/RUNX cis-regulatory module couples Drosophila blood cell commitment and differentiation into crystal cells. Developmental Biology, 2007, 305, 726-734.	2.0	44
20	Role of GATA Factors in Development. , 2005, , 221-231.		0
21	Resolving embryonic blood cell fate choice in Drosophila:interplay of GCM and RUNX factors. Development (Cambridge), 2005, 132, 4635-4644.	2.5	71
22	Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO Journal, 2003, 22, 6516-6525.	7.8	108
23	A P-insertion screen identifying novel X-linked essential genes in Drosophila. Mechanisms of Development, 2002, 110, 71-83.	1.7	163
24	Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO Journal, 2002, 21, 5477-5486.	7.8	92
25	New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes. Mechanisms of Development, 2001, 104, 99-104.	1.7	57
26	Two different activities of Suppressor of Hairless during wing development in Drosophila. Development (Cambridge), 2000, 127, 3553-66.	2.5	24
27	Transcriptional activity of Pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the <i>u-shaped</i> gene of <i>Drosophila</i> . Genes and Development, 1997, 11, 3096-3108.	5.9	175
28	<i>u-shaped</i> encodes a zinc finger protein that regulates the proneural genes <i>achaete</i> and <i>scute</i> during the formation of bristles in <i>Drosophila</i> . Genes and Development, 1997, 11, 3083-3095.	5.9	132
29	Requirement for Dynamin during Notch Signaling inDrosophilaNeurogenesis. Developmental Biology, 1997, 192, 585-598.	2.0	247
30	Transcriptional regulation of <i>Notch</i> and <i>Delta</i> : requirement for neuroblast segregation in <i>Drosophila</i> . Development (Cambridge), 1997, 124, 2015-2025.	2.5	72
31	A Genetic Analysis of <i>pannier</i> , a Gene Necessary for Viability of Dorsal Tissues and Bristle Positioning in Drosophila. Genetics, 1996, 143, 1271-1286.	2.9	141
32	The angle of the dorsoventral axis with respect to the anteroposterior axis in the Drosophila embryo is controlled by the distribution of gurken mRNA in the oocyte. Mechanisms of Development, 1995, 49, 97-106.	1.7	5
33	Genomic regions regulating early embryonic expression of the Drosophila neurogenic gene Delta. Mechanisms of Development, 1994, 47, 99-110.	1.7	45
34	Lateral inhibition mediated by the Drosophila neurogenic gene delta is enhanced by proneural proteins Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10139-10143.	7.1	140
35	<i>pannier</i> , a negative regulator of <i>achaete</i> and <i>scute</i> in <i>Drosophila</i> , encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development (Cambridge), 1993, 119, 1277-1291.	2.5	198
36	pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development (Cambridge), 1993, 119, 1277-91.	2.5	61

MARC HAENLIN

#	Article	IF	CITATIONS
37	Regulatory signals and signal molecules in early neurogenesis of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1992, 201, 1-11.	1.2	28
38	Delta, Notch, and shaggy: Elements of a Lateral Signaling Pathway in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology, 1992, 57, 391-400.	1.1	10
39	The pattern of transcription of the neurogenic gene Delta of Drosophila melanogaster. Development (Cambridge), 1990, 110, 905-914.	2.5	68
40	The pattern of transcription of the neurogenic gene Delta of Drosophila melanogaster. Development (Cambridge), 1990, 110, 905-14.	2.5	28
41	Role of the oocyte nucleus in determination of the dorsoventral polarity of <i>Drosophila</i> as revealed by molecular analysis of the K10 gene. Genes and Development, 1988, 2, 891-900.	5.9	39
42	DNA sequences homologous to the Drosophila opa repeat are present in murine mRNAs that are differentially expressed in fetuses and adult tissues Molecular and Cellular Biology, 1987, 7, 2003-2006.	2.3	39
43	Oocyte-specific transcription of <i>fs(1)K10</i> : a <i>Drosophila</i> gene affecting dorsal-ventral developmental polarity. EMBO Journal, 1987, 6, 801-807.	7.8	37
44	Oocyte-specific transcription of fs(1)K10: a Drosophila gene affecting dorsal-ventral developmental polarity. EMBO Journal, 1987, 6, 801-7.	7.8	9
45	A 43 kilobase cosmid P transposon rescues the fs(1)K10 morphogenetic locus and three adjacent drosophila developmental mutants. Cell, 1985, 40, 827-837.	28.9	52