Katherine R Amato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484789/publications.pdf

Version: 2024-02-01

71 papers 6,286 citations

33 h-index 65 g-index

75 all docs

75 docs citations

75 times ranked 7064 citing authors

#	Article	IF	CITATIONS
1	Comparing different sample collection and storage methods for fieldâ€based skin microbiome research. American Journal of Human Biology, 2022, 34, e23584.	1.6	8
2	Butyrate Production Pathway Abundances Are Similar in Human and Nonhuman Primate Gut Microbiomes. Molecular Biology and Evolution, 2022, 39, .	8.9	13
3	Specialised digestive adaptations within the hindgut of a colobine monkey. Innovation(China), 2022, 3, 100207.	9.1	6
4	Relationships Between Migration and Microbiome Composition and Diversity in Urban Canada Geese. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	5
5	The chemical landscape of tropical mammals in the Anthropocene. Biological Conservation, 2022, 269, 109522.	4.1	6
6	Platyrrhine Diet., 2022,, 5362-5367.		0
7	The faecal metabolome of black howler monkeys (<i>Alouatta pigra</i>) varies in response to seasonal dietary changes. Molecular Ecology, 2022, 31, 4146-4161.	3.9	4
8	Effects of anthropogenic habitat disturbance and <i>Giardia duodenalis</i> i>infection on a sentinel species' gut bacteria. Ecology and Evolution, 2021, 11, 45-57.	1.9	3
9	Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome, 2021, 9, 26.	11.1	105
10	Fermented food consumption in wild nonhuman primates and its ecological drivers. American Journal of Physical Anthropology, 2021, 175, 513-530.	2.1	16
11	Captivity Is Associated With Gut Mycobiome Composition in Tibetan Macaques (Macaca thibetana). Frontiers in Microbiology, 2021, 12, 665853.	3.5	16
12	Host specificity of the gut microbiome. Nature Reviews Microbiology, 2021, 19, 639-653.	28.6	77
13	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	82
14	Host genetics influence the gut microbiome. Science, 2021, 373, 159-160.	12.6	5
15	Assessing the Influence of Environmental Sources on the Gut Mycobiome of Tibetan Macaques. Frontiers in Microbiology, 2021, 12, 730477.	3.5	3
16	Predigestion as an Evolutionary Impetus for Human Use of Fermented Food. Current Anthropology, 2021, 62, S207-S219.	1.6	22
17	The relationship between pinworm (Trypanoxyuris) infection and gut bacteria in wild black howler monkeys (Alouatta pigra). American Journal of Primatology, 2021, 83, e23330.	1.7	7
18	The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	100

#	Article	IF	CITATIONS
19	The gut microbiome as an indicator of habitat disturbance in a Critically Endangered lemur. Bmc Ecology and Evolution, 2021, 21, 222.	1.6	6
20	Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME Journal, 2020, 14, 609-622.	9.8	32
21	Phylosymbiosis, diet and gut microbiome-associated metabolic disease. Evolution, Medicine and Public Health, 2020, 2020, 100-101.	2.5	1
22	Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States. MSystems, 2020, 5, .	3.8	16
23	A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Scientific Reports, 2020, 10, 19107.	3.3	13
24	Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica, 2020, 52, 981-990.	1.6	14
25	Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre's leaf monkeys. Scientific Reports, 2020, 10, 9961.	3.3	44
26	The Internal, External and Extended Microbiomes of Hominins. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
27	Comparative Analyses of Vertebrate Gut Microbiomes Reveal Convergence between Birds and Bats. MBio, 2020, 11, .	4.1	204
28	Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME Journal, 2019, 13, 576-587.	9.8	236
29	Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. BioEssays, 2019, 41, e1900034.	2.5	21
30	Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biology, 2019, 20, 201.	8.8	57
31	The effect of captivity on the primate gut microbiome varies with host dietary niche. American Journal of Primatology, 2019, 81, e23061.	1.7	56
32	Moving forward with the primate microbiome: Introduction to a special issue of the <i>American Journal of Primatology</i> . American Journal of Primatology, 2019, 81, e23060.	1.7	0
33	Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. MSphere, 2019, 4, .	2.9	40
34	Leveraging non-human primates for exploring the social transmission of microbes. Current Opinion in Microbiology, 2019, 50, 8-14.	5.1	18
35	Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. BioEssays, 2019, 41, e1900007.	2.5	12
36	Gut microbiota in wild and captive Guizhou snubâ€nosed monkeys, <i>Rhinopithecus brelichi</i> American Journal of Primatology, 2019, 81, e22989.	1.7	55

3

#	Article	IF	Citations
37	The Vervet Microbiome. , 2019, , 71-78.		O
38	Missing Links: the Role of Primates in Understanding the Human Microbiome. MSystems, 2019, 4, .	3.8	4
39	Assessing the comparability of different DNA extraction and amplification methods in gut microbial community profiling. Access Microbiology, 2019, 1, e000060.	0.5	10
40	Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. MSystems, $2019, 4, .$	3.8	109
41	Influence of fruit and invertebrate consumption on the gut microbiota of wild whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Physical Anthropology, 2018, 165, 576-588.	2.1	36
42	Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microbial Ecology, 2018, 75, 515-527.	2.8	106
43	Social behaviour and gut microbiota in redâ€bellied lemurs (<i><scp>E</scp>ulemur rubriventer</i>): In search of the role of immunity in the evolution of sociality. Journal of Animal Ecology, 2018, 87, 388-399.	2.8	57
44	The microbial reproductive ecology of whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Primatology, 2018, 80, e22896.	1.7	36
45	The gut microbiome of nonhuman primates: Lessons in ecology and evolution. American Journal of Primatology, 2018, 80, e22867.	1.7	100
46	Platyrrhine Diet., 2018,, 1-6.		1
47	Impending extinction crisis of the world's primates: Why primates matter. Science Advances, 2017, 3, e1600946.	10.3	912
48	Patterns in Gut Microbiota Similarity Associated with Degree of Sociality among Sex Classes of a Neotropical Primate. Microbial Ecology, 2017, 74, 250-258.	2.8	70
49	Metabolomic data suggest regulation of black howler monkey (<i>Alouatta pigra</i>) diet composition at the molecular level. American Journal of Primatology, 2017, 79, 1-10.	1.7	8
50	Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (<i>Propithecus verreauxi</i>). Ecology and Evolution, 2017, 7, 5732-5745.	1.9	90
51	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	2.0	301
52	An introduction to microbiome analysis for human biology applications. American Journal of Human Biology, 2017, 29, e22931.	1.6	22
53	The human microbiome in evolution. BMC Biology, 2017, 15, 127.	3.8	243
54	Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. MSystems, 2016, 1, .	3.8	367

#	Article	IF	Citations
55	Effects of field conditions on fecal microbiota. Journal of Microbiological Methods, 2016, 130, 180-188.	1.6	28
56	Using the gut microbiota as a novel tool for examining colobine primate GI health. Global Ecology and Conservation, 2016, 7, 225-237.	2.1	76
57	Incorporating the gut microbiota into models of human and nonâ€human primate ecology and evolution. American Journal of Physical Anthropology, 2016, 159, 196-215.	2.1	99
58	Host age, social group, and habitat type influence the gut microbiota of wild ringâ€ŧailed lemurs (<i>Lemur catta</i>). American Journal of Primatology, 2016, 78, 883-892.	1.7	98
59	Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Reports, 2016, 14, 2142-2153.	6.4	231
60	Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia, 2016, 180, 717-733.	2.0	91
61	Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome, 2015, 3, 53.	11.1	108
62	The Howler Monkey as a Model for Exploring Host-Gut Microbiota Interactions in Primates. , 2015 , , $229-258$.		8
63	The Gut Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild Black Howler Monkey (Alouatta pigra). Microbial Ecology, 2015, 69, 434-443.	2.8	254
64	Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8weeks. Journal of Microbiological Methods, 2015, 113, 16-26.	1.6	118
65	Nutrition and foraging strategies of the black howler monkey (<i>Alouatta pigra</i>) in Palenque National Park, Mexico. American Journal of Primatology, 2014, 76, 774-787.	1.7	45
66	The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (<scp><i>A</i></scp> <i>louatta pigra</i>). American Journal of Physical Anthropology, 2014, 155, 652-664.	2.1	103
67	A Comparison of Scan and Focal Sampling for the Description of Wild Primate Activity, Diet and Intragroup Spatial Relationships. Folia Primatologica, 2013, 84, 87-101.	0.7	13
68	Habitat degradation impacts black howler monkey (<i>Alouatta pigra</i>) gastrointestinal microbiomes. ISME Journal, 2013, 7, 1344-1353.	9.8	1,031
69	Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 2013, $1,\ldots$	0.3	138
70	Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (<i>Alouatta) Tj ETQq0</i>	0 0 rgBT /C)verlock 10 Tf
71	Environmental Stress and the Primate Microbiome: Glucocorticoids Contribute to Structure Gut Bacterial Communities of Black Howler Monkeys in Anthropogenically Disturbed Forest Fragments. Frontiers in Ecology and Evolution, 0, 10, .	2.2	1