
Glen M Scholz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8484642/publications.pdf Version: 2024-02-01

CLEN M SCHOLZ

#	Article	IF	CITATIONS
1	IL-36G promotes cancer-cell intrinsic hallmarks in human gastric cancer cells. Cytokine, 2022, 155, 155887.	3.2	6
2	IL-36Î ³ regulates mediators of tissue homeostasis in epithelial cells. Cytokine, 2019, 119, 24-31.	3.2	11
3	Interplay between <i>Porphyromonas gingivalis</i> and EGF signalling in the regulation of CXCL14. Cellular Microbiology, 2018, 20, e12837.	2.1	5
4	MEKâ€ERK signaling diametrically controls the stimulation of ILâ€23p19 and EBI3 expression in epithelial cells by ILâ€36γ. Immunology and Cell Biology, 2018, 96, 646-655.	2.3	15
5	Regulation of the Peptidoglycan Amidase PGLYRP2 in Epithelial Cells by Interleukin-36γ. Infection and Immunity, 2018, 86, .	2.2	9
6	Interferon Regulatory Factor 6 Promotes Keratinocyte Differentiation in Response to Porphyromonas gingivalis. Infection and Immunity, 2017, 85, .	2.2	7
7	The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Seminars in Cell and Developmental Biology, 2017, 61, 22-30.	5.0	39
8	RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes. Cytokine, 2016, 83, 19-26.	3.2	19
9	A novel regulatory relationship between RIPK4 and ELF3 in keratinocytes. Cellular Signalling, 2016, 28, 1916-1922.	3.6	11
10	IRF6 Regulates the Expression of IL-36γ by Human Oral Epithelial Cells in Response to <i>Porphyromonas gingivalis</i> . Journal of Immunology, 2016, 196, 2230-2238.	0.8	42
11	C-terminal Src kinase-homologous kinase (CHK), a unique inhibitor inactivating multiple active conformations of Src family tyrosine kinases Journal of Biological Chemistry, 2015, 290, 240.	3.4	0
12	Disease-associated mutations in IRF6 and RIPK4 dysregulate their signalling functions. Cellular Signalling, 2015, 27, 1509-1516.	3.6	24
13	TLR3 drives IRF6â€dependent ILâ€23p19 expression and p19/EBI3 heterodimer formation in keratinocytes. Immunology and Cell Biology, 2015, 93, 771-779.	2.3	49
14	Interferon Regulatory Factor 6 Differentially Regulates Toll-like Receptor 2-dependent Chemokine Gene Expression in Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 19758-19768.	3.4	33
15	Receptor-interacting Protein Kinase 4 and Interferon Regulatory Factor 6 Function as a Signaling Axis to Regulate Keratinocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 31077-31087.	3.4	51
16	Hypoxia Enhances the Proliferative Response of Macrophages to CSF-1 and Their Pro-Survival Response to TNF. PLoS ONE, 2012, 7, e45853.	2.5	12
17	Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models. Journal of Immunology, 2012, 188, 5752-5765.	0.8	429
18	CSF-1 receptor signalling from endosomes mediates the sustained activation of Erk1/2 and Akt in macrophages. Cellular Signalling, 2012, 24, 1753-1761.	3.6	30

GLEN M SCHOLZ

#	Article	IF	CITATIONS
19	Hypoxia Prolongs Monocyte/Macrophage Survival and Enhanced Glycolysis Is Associated with Their Maturation under Aerobic Conditions. Journal of Immunology, 2009, 182, 7974-7981.	0.8	139
20	Signaling Crosstalk during Sequential TLR4 and TLR9 Activation Amplifies the Inflammatory Response of Mouse Macrophages. Journal of Immunology, 2009, 183, 8110-8118.	0.8	94
21	Glucose Metabolism Is Required for Oxidized LDL–Induced Macrophage Survival. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1283-1289.	2.4	17
22	Glycolytic control of adjuvant-induced macrophage survival: role of PI3K, MEK1/2, and Bcl-2. Journal of Leukocyte Biology, 2009, 85, 947-956.	3.3	16
23	Down-regulation of IRAK-4 is a component of LPS- and CpG DNA-induced tolerance in macrophages. Cellular Signalling, 2009, 21, 246-252.	3.6	34
24	Regulation of IRAK-1 activation by its C-terminal domain. Cellular Signalling, 2009, 21, 719-726.	3.6	12
25	Phosphatidylinostitol-3 kinase and phospholipase C enhance CSF-1-dependent macrophage survival by controlling glucose uptake. Cellular Signalling, 2009, 21, 1361-1369.	3.6	29
26	The Critical Role of the Colony-Stimulating Factor-1 Receptor in the Differentiation of Myeloblastic Leukemia Cells. Molecular Cancer Research, 2008, 6, 458-467.	3.4	14
27	Regulation of WAVE1 expression in macrophages at multiple levels. Journal of Leukocyte Biology, 2008, 84, 1483-1491.	3.3	4
28	Regulation of the Endosomal SNARE Protein Syntaxin 7 by Colony-Stimulating Factor 1 in Macrophages. Molecular and Cellular Biology, 2008, 28, 6149-6159.	2.3	23
29	Importance of the C-Terminal Domain of Harc for Binding to Hsp70 and Hop as Well as Its Response to Heat Shock. Biochemistry, 2007, 46, 15144-15152.	2.5	2
30	A potential role for the Src-like adapter protein SLAP-2 in signaling by the colony stimulating factor-1 receptor. FEBS Journal, 2006, 273, 1791-1804.	4.7	15
31	CpG DNA enhances macrophage cell spreading by promoting the Src-family kinase-mediated phosphorylation of paxillin. Cellular Signalling, 2006, 18, 2252-2261.	3.6	18
32	C-terminal Src Kinase-homologous Kinase (CHK), a Unique Inhibitor Inactivating Multiple Active Conformations of Src Family Tyrosine Kinases. Journal of Biological Chemistry, 2006, 281, 32988-32999.	3.4	40
33	Roles of tyrosine residues 845, 892 and 922 in constitutive activation of murine FLT3 kinase domain mutant. Oncogene, 2005, 24, 8144-8153.	5.9	13
34	A Central Role for the Hsp90·Cdc37 Molecular Chaperone Module in Interleukin-1 Receptor-associated-kinase-dependent Signaling by Toll-like Receptors. Journal of Biological Chemistry, 2005, 280, 9813-9822.	3.4	48
35	Domain-Mediated Dimerization of the Hsp90 Cochaperones Harc and Cdc37â€. Biochemistry, 2005, 44, 6662-6669.	2.5	16
36	A Novel Non-catalytic Mechanism Employed by the C-terminal Src-homologous Kinase to Inhibit Src-family Kinase Activity. Journal of Biological Chemistry, 2004, 279, 20752-20766.	3.4	52

GLEN M SCHOLZ

#	Article	IF	CITATIONS
37	Constitutive Activation of the Src Family Kinase Hck Results in Spontaneous Pulmonary Inflammation and an Enhanced Innate Immune Response. Journal of Experimental Medicine, 2002, 196, 589-604.	8.5	112
38	Identification and Characterization of Harc, a Novel Hsp90-associating Relative of Cdc37. Journal of Biological Chemistry, 2001, 276, 30971-30979.	3.4	34
39	Hck Enhances the Adherence of Lipopolysaccharide-stimulated Macrophages via Cbl and Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2000, 275, 14615-14623.	3.4	39
40	Modulation of the Catalytic Activity of the Src Family Tyrosine Kinase Hck by Autophosphorylation at a Novel Site in the Unique Domain. Journal of Biological Chemistry, 2000, 275, 33353-33364.	3.4	26
41	Generation and Characterization of Monoclonal Antibodies to the Src-Family Kinase Hck. Hybridoma, 2000, 19, 323-330.	0.6	3
42	p50 Cdc37 Can Buffer the Temperature-Sensitive Properties of a Mutant of Hck. Molecular and Cellular Biology, 2000, 20, 6984-6995.	2.3	41
43	Affinity labelling of the active site of brain phosphatidylinositol 4-kinase with 5'-fluorosulphonylbenzoyl-adenosine. FEBS Journal, 1992, 210, 461-466.	0.2	4
44	Purification and chemical modification of a phosphatidylinositol kinase from sheep brain. FEBS Journal, 1991, 201, 249-255.	0.2	12
45	Pyridoxal Kinase: Inhibitors Bound to the Pyridoxal Binding Site. , 1991, , 617-619.		0
46	Binding of a photoaffinity analogue of pyridoxal to pyridoxal kinase. FEBS Journal, 1990, 193, 479-484.	0.2	2
47	Activation of pyridoxal kinase by metallothionein. BBA - Proteins and Proteomics, 1989, 996, 181-186.	2.1	51
48	Brain pyridoxal kinase dissociation of the dimeric structure and catalytic activity of the monomeric species. FEBS Journal, 1987, 168, 577-583.	0.2	18